Suppr超能文献

利用经验模态分解分析东京地区 COVID-19 传播的非线性频率。

Nonlinear frequency analysis of COVID-19 spread in Tokyo using empirical mode decomposition.

机构信息

School of Computer Science, Tokyo University of Technology, Tokyo, 192-0982, Japan.

Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, 305-8577, Japan.

出版信息

Sci Rep. 2022 Feb 9;12(1):2175. doi: 10.1038/s41598-022-06095-w.

Abstract

Empirical mode decomposition (EMD) was adopted to decompose daily COVID-19 infections in Tokyo from February 28, 2020, to July 12, 2021. Daily COVID-19 infections were nonlinearly decomposed into several monochromatic waves, intrinsic mode functions (IMFs), corresponding to their periodic meanings from high frequency to low frequency. High-frequency IMFs represent variabilities of random factors and variations in the number of daily PCR and antigen inspections, which can be nonlinearly denoised using EMD. Compared with a moving average and Fourier transform, EMD provides better performance in denoising and analyzing COVID-19 spread. After variabilities of daily inspections were weekly denoised by EMD, one low-frequency IMF reveals that the average period of external influences (public health and social measures) to stop COVID-19 spread was 19 days, corresponding to the measures response duration based on the incubation period. By monitoring this nonlinear wave, public health and social measures for stopping COVID-19 spread can be evaluated and visualized quantitatively in the instantaneous frequency domain. Moreover, another low-frequency IMF revealed that the period of the COVID-19 outbreak and retreat was 57 days on average. This nonlinear wave can be used as a reference for setting the timeframe for state of emergency declarations. Thus, decomposing daily infections in the instantaneous frequency domain using EMD represents a useful tool to improve public health and social measures for stopping COVID-19 spread.

摘要

经验模态分解(EMD)被用于分解 2020 年 2 月 28 日至 2021 年 7 月 12 日期间东京每日的 COVID-19 感染数据。每日 COVID-19 感染数据被非线性分解为若干单频波,即固有模态函数(IMF),它们对应着从高频到低频的周期性含义。高频 IMF 代表了随机因素的变化和每日 PCR 及抗原检测数量的变化,可以使用 EMD 进行非线性去噪。与移动平均和傅里叶变换相比,EMD 在去噪和分析 COVID-19 传播方面具有更好的性能。在对每日检测的变异性进行 EMD 每周去噪后,一个低频 IMF 揭示了外部影响(公共卫生和社会措施)停止 COVID-19 传播的平均周期为 19 天,这与基于潜伏期的措施响应时间相对应。通过监测这个非线性波,可以在瞬时频域中对阻止 COVID-19 传播的公共卫生和社会措施进行定量评估和可视化。此外,另一个低频 IMF 揭示了 COVID-19 爆发和消退的平均周期为 57 天。这个非线性波可以作为设置紧急状态声明时间框架的参考。因此,使用 EMD 对每日感染数据进行瞬时频率分解是一种改进阻止 COVID-19 传播的公共卫生和社会措施的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2af/8828779/606220832e41/41598_2022_6095_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验