Suppr超能文献

编辑基因组提高小麦对白粉病的抗性而不影响生长。

Genome-edited powdery mildew resistance in wheat without growth penalties.

机构信息

State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.

出版信息

Nature. 2022 Feb;602(7897):455-460. doi: 10.1038/s41586-022-04395-9. Epub 2022 Feb 9.

Abstract

Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species. However, mlo-associated resistance is also accompanied by growth penalties and yield losses, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.

摘要

作物感病性(S)基因的破坏是赋予作物抗病性的一种有吸引力的育种策略。然而,S 基因涉及许多重要的生物学功能,这些基因的缺失通常会导致不理想的多效性效应。在一个这样的 S 基因,白粉病抗性位点 O(MLO)中,功能丧失突变赋予了各种植物物种对白粉病的持久和广谱抗性。然而,mlo 相关的抗性也伴随着生长惩罚和产量损失,从而限制了其在农业中的广泛应用。在这里,我们描述了 Tamlo-R32,这是一种在小麦 MLO-B1 基因座发生 304 千碱基对靶向缺失的突变体,保留了作物生长和产量,同时赋予了强大的白粉病抗性。我们表明,这种缺失导致局部染色质景观发生改变,导致液泡单糖转运蛋白 3(TaTMT3B)的异位激活,并且这种激活减轻了与 MLO 破坏相关的生长和产量损失。值得注意的是,TMT3 的功能在拟南芥等其他植物物种中是保守的。此外,精确的基因组编辑促进了这种 mlo 抗性等位基因(Tamlo-R32)快速引入到优良小麦品种中。这项工作证明了能够堆叠遗传变化来挽救隐性等位基因引起的生长缺陷的能力,这对于开发具有强大和持久抗病性的高产作物品种至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验