Chu Kang Ching, Yeh Chia Hui, Lin Jhih Min, Chen Chun Yu, Cheng Chi Yuan, Yeh Yi Qi, Huang Yu Shan, Tsai Yi Wei
National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan.
J Synchrotron Radiat. 2024 Sep 1;31(Pt 5):1340-1345. doi: 10.1107/S1600577524006519. Epub 2024 Aug 5.
The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions.
相干衍射成像(CDI)重建图像中固有的模糊性带来了一个内在挑战,因为在不同初始条件下从同一数据集得出的图像往往显示出不一致性。本研究引入了一种方法,该方法采用噪声到噪声方法并结合神经网络,以有效减轻这些模糊性。我们将此方法应用于使用传统检索算法从单个衍射图案中检索出的数百个模糊重建图像。我们的结果表明,这些重建中的模糊特征被有效地视为重建间噪声,并得到了显著减少。经过噪声到噪声处理后的图像非常接近各种重建的平均值和奇异值分解分析结果,提供了一致且可靠的重建结果。