Suppr超能文献

拟南芥谷胱甘肽-S-转移酶及其在脂肪族硫代葡萄糖苷生物合成中的作用

Arabidopsis Glutathione-S-Transferases and Function in Aliphatic Glucosinolate Biosynthesis.

作者信息

Zhang Aiqin, Luo Rui, Li Jiawen, Miao Rongqing, An Hui, Yan Xiufeng, Pang Qiuying

机构信息

Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.

College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China.

出版信息

Front Plant Sci. 2022 Jan 25;12:816233. doi: 10.3389/fpls.2021.816233. eCollection 2021.

Abstract

Glutathione (GSH) conjugation with intermediates is required for the biosynthesis of glucosinolate (GSL) by serving as a sulfur supply. Glutathione-S-transferases (GSTs) primarily work on GSH conjugation, suggesting their involvement in GSL metabolism. Although several GSTs, including GSTF11 and GSTU20, have been recently postulated to act in GSL biosynthesis, molecular evidence is lacking. Here, we demonstrated that and play non-redundant, although partially overlapping, roles in aliphatic GSL biosynthesis. In addition, plays a more important role than , which is manifested by the greater loss of aliphatic GSLs associated with mutant and a greater number of differentially expressed genes in mutant compared to mutant. Moreover, a double mutation leads to a greater aggregate loss of aliphatic GSLs, suggesting that and may function in GSL biosynthesis in a dosage-dependent manner. Together, our results provide direct evidence that and are critically involved in aliphatic GSL biosynthesis, filling the knowledge gap that has been speculated in recent decades.

摘要

谷胱甘肽(GSH)与中间体的结合作为硫源,是芥子油苷(GSL)生物合成所必需的。谷胱甘肽-S-转移酶(GSTs)主要作用于GSH结合,表明它们参与GSL代谢。尽管最近推测包括GSTF11和GSTU20在内的几种GSTs在GSL生物合成中起作用,但缺乏分子证据。在这里,我们证明了 和 在脂肪族GSL生物合成中发挥非冗余但部分重叠的作用。此外, 比 发挥更重要的作用,这表现为与 突变体相比, 突变体中脂肪族GSLs的损失更大,且 突变体中差异表达基因的数量更多。此外,双突变导致脂肪族GSLs的总损失更大,表明 和 可能以剂量依赖的方式在GSL生物合成中发挥作用。总之,我们的结果提供了直接证据,证明 和 关键参与脂肪族GSL生物合成,填补了近几十年来一直存在的知识空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a11/8821908/5c81a7d9713b/fpls-12-816233-g001.jpg

相似文献

1
Arabidopsis Glutathione-S-Transferases and Function in Aliphatic Glucosinolate Biosynthesis.
Front Plant Sci. 2022 Jan 25;12:816233. doi: 10.3389/fpls.2021.816233. eCollection 2021.
2
The Role of the Gene in Resistance to Powdery Mildew Infection and Cold Stress.
Plants (Basel). 2021 Dec 11;10(12):2729. doi: 10.3390/plants10122729.
5
Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants.
Sci Adv. 2016 Oct 7;2(10):e1601087. doi: 10.1126/sciadv.1601087. eCollection 2016 Oct.
6
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83. doi: 10.1073/pnas.0611629104. Epub 2007 Apr 9.
7
Analysis of Glucosinolate Content and Metabolism Related Genes in Different Parts of Chinese Flowering Cabbage.
Front Plant Sci. 2022 Jan 17;12:767898. doi: 10.3389/fpls.2021.767898. eCollection 2021.
10
The Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest.
Front Plant Sci. 2020 Oct 27;11:525102. doi: 10.3389/fpls.2020.525102. eCollection 2020.

引用本文的文献

1
Evolution and comparative transcriptome analysis of glucosinolate pathway genes in L.
Front Plant Sci. 2024 Dec 10;15:1483635. doi: 10.3389/fpls.2024.1483635. eCollection 2024.
5
Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways.
Plant Commun. 2023 Jul 10;4(4):100565. doi: 10.1016/j.xplc.2023.100565. Epub 2023 Feb 23.
6
Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in L.
Plants (Basel). 2023 Feb 1;12(3):639. doi: 10.3390/plants12030639.
7
Production of benzylglucosinolate in genetically engineered carrot suspension cultures.
Plant Biotechnol (Tokyo). 2022 Sep 25;39(3):241-250. doi: 10.5511/plantbiotechnology.22.0509a.

本文引用的文献

2
A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in .
J Agric Food Chem. 2020 Jul 15;68(28):7281-7297. doi: 10.1021/acs.jafc.0c01916. Epub 2020 Jul 1.
3
Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants.
Phytochemistry. 2020 Jan;169:112100. doi: 10.1016/j.phytochem.2019.112100. Epub 2019 Nov 23.
4
Glutathione -Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.
Front Plant Sci. 2018 Nov 13;9:1639. doi: 10.3389/fpls.2018.01639. eCollection 2018.
6
PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.
Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426. doi: 10.1093/nar/gky1038.
7
Biotechnological approaches in glucosinolate production.
J Integr Plant Biol. 2018 Dec;60(12):1231-1248. doi: 10.1111/jipb.12705. Epub 2018 Oct 1.
9
Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism.
Plant Physiol. 2018 Jan;176(1):538-551. doi: 10.1104/pp.17.01455. Epub 2017 Nov 9.
10
Biosynthesis of cabbage phytoalexins from indole glucosinolate.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1910-1915. doi: 10.1073/pnas.1615625114. Epub 2017 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验