文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用机器学习方法提高超声在头颈部肿瘤学中的性能:文献综述

Application of Machine Learning Methods to Improve the Performance of Ultrasound in Head and Neck Oncology: A Literature Review.

作者信息

DeJohn Celia R, Grant Sydney R, Seshadri Mukund

机构信息

Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.

Cell Stress and Biophysical Oncology Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.

出版信息

Cancers (Basel). 2022 Jan 28;14(3):665. doi: 10.3390/cancers14030665.


DOI:10.3390/cancers14030665
PMID:35158932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8833587/
Abstract

Radiomics is a rapidly growing area of research within radiology that involves the extraction and modeling of high-dimensional quantitative imaging features using machine learning/artificial intelligence (ML/AI) methods. In this review, we describe the published clinical evidence on the application of ML methods to improve the performance of ultrasound (US) in head and neck oncology. A systematic search of electronic databases (MEDLINE, PubMed, clinicaltrials.gov) was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of 15,080 initial articles identified, 34 studies were selected for in-depth analysis. Twenty-five out of 34 studies (74%) focused on the diagnostic application of US radiomics while 6 (18%) studies focused on response assessment and 3 (8%) studies utilized US radiomics for modeling normal tissue toxicity. Support vector machine (SVM) was the most commonly employed ML method (47%) followed by multivariate logistic regression (24%) and k-nearest neighbor analysis (21%). Only 11/34 (~32%) of the studies included an independent validation set. A majority of studies were retrospective in nature (76%) and based on single-center evaluation (85%) with variable numbers of patients (12-1609) and imaging datasets (32-1624). Despite these limitations, the application of ML methods resulted in improved diagnostic and prognostic performance of US highlighting the potential clinical utility of this approach.

摘要

放射组学是放射学领域中一个快速发展的研究领域,它涉及使用机器学习/人工智能(ML/AI)方法提取和建模高维定量成像特征。在本综述中,我们描述了已发表的关于应用ML方法提高超声(US)在头颈部肿瘤学中性能的临床证据。根据系统评价和Meta分析的首选报告项目(PRISMA)指南,对电子数据库(MEDLINE、PubMed、clinicaltrials.gov)进行了系统检索。在最初识别的15080篇文章中,选择了34项研究进行深入分析。34项研究中有25项(74%)专注于超声放射组学的诊断应用,6项(18%)研究专注于疗效评估,3项(8%)研究利用超声放射组学对正常组织毒性进行建模。支持向量机(SVM)是最常用的ML方法(47%),其次是多变量逻辑回归(24%)和k近邻分析(21%)。只有11/34(约32%)的研究包括独立验证集。大多数研究本质上是回顾性的(76%),基于单中心评估(85%),患者数量(12 - 1609)和成像数据集数量(32 - 1624)各不相同。尽管存在这些局限性,但ML方法的应用提高了超声的诊断和预后性能,突出了这种方法的潜在临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/596f9322f15f/cancers-14-00665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/1ad9bccbba5c/cancers-14-00665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/ef45417962ff/cancers-14-00665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/9934b716f57a/cancers-14-00665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/37ea57ac3c89/cancers-14-00665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/596f9322f15f/cancers-14-00665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/1ad9bccbba5c/cancers-14-00665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/ef45417962ff/cancers-14-00665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/9934b716f57a/cancers-14-00665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/37ea57ac3c89/cancers-14-00665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc37/8833587/596f9322f15f/cancers-14-00665-g005.jpg

相似文献

[1]
Application of Machine Learning Methods to Improve the Performance of Ultrasound in Head and Neck Oncology: A Literature Review.

Cancers (Basel). 2022-1-28

[2]
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.

Int J Med Inform. 2024-8

[3]
Current state of radiomics in pediatric neuro-oncology practice: a systematic review.

Pediatr Radiol. 2023-9

[4]
Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.

Adv Ther. 2023-8

[5]
A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery.

Ann Vasc Surg. 2022-9

[6]
Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review.

Artif Intell Med. 2021-5

[7]
Role of Radiomics in the Prediction of Muscle-invasive Bladder Cancer: A Systematic Review and Meta-analysis.

Eur Urol Focus. 2022-5

[8]
Current role of artificial intelligence in head and neck cancer surgery: a systematic review of literature.

Explor Target Antitumor Ther. 2023

[9]
Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review.

Cancers (Basel). 2023-3-18

[10]
Application of machine learning in predicting hospital readmissions: a scoping review of the literature.

BMC Med Res Methodol. 2021-5-6

引用本文的文献

[1]
Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews.

J Med Internet Res. 2025-4-1

[2]
A risk stratification model based on ultrasound radiologic features for cervical metastatic lymph nodes in papillary thyroid cancer.

World J Surg Oncol. 2025-3-25

[3]
Research on ultrasound-based radiomics: a bibliometric analysis.

Quant Imaging Med Surg. 2024-7-1

[4]
Artificial Intelligence in Neuroradiology: A Review of Current Topics and Competition Challenges.

Diagnostics (Basel). 2023-8-14

[5]
A radiomics model based on aortic computed tomography angiography: the impact on predicting the prognosis of patients with aortic intramural hematoma (IMH).

Quant Imaging Med Surg. 2023-2-1

[6]
Diagnostic and Prognostic Deep Learning Applications for Histological Assessment of Cutaneous Melanoma.

Cancers (Basel). 2022-12-17

[7]
Frontiers and hotspots of F-FDG PET/CT radiomics: A bibliometric analysis of the published literature.

Front Oncol. 2022-9-13

本文引用的文献

[1]
Professionals' responses to the introduction of AI innovations in radiology and their implications for future adoption: a qualitative study.

BMC Health Serv Res. 2021-8-14

[2]
Neck dissection and trans oral robotic surgery for oropharyngeal squamous cell carcinoma.

Auris Nasus Larynx. 2022-2

[3]
Artificial Intelligence and Radiomics in Head and Neck Cancer Care: Opportunities, Mechanics, and Challenges.

Am Soc Clin Oncol Educ Book. 2021-3

[4]
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.

BMJ. 2021-3-29

[5]
Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma.

Clin Transl Radiat Oncol. 2021-3-12

[6]
An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude.

Eur Radiol. 2021-9

[7]
Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics.

Sci Rep. 2021-3-17

[8]
Implications of US radiomics signature for predicting malignancy in thyroid nodules with indeterminate cytology.

Eur Radiol. 2021-7

[9]
Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines.

Trials. 2021-1-6

[10]
Perceptions of Canadian radiation oncologists, radiation physicists, radiation therapists and radiation trainees about the impact of artificial intelligence in radiation oncology - national survey.

J Med Imaging Radiat Sci. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索