DeJohn Celia R, Grant Sydney R, Seshadri Mukund
Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
Cell Stress and Biophysical Oncology Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
Cancers (Basel). 2022 Jan 28;14(3):665. doi: 10.3390/cancers14030665.
Radiomics is a rapidly growing area of research within radiology that involves the extraction and modeling of high-dimensional quantitative imaging features using machine learning/artificial intelligence (ML/AI) methods. In this review, we describe the published clinical evidence on the application of ML methods to improve the performance of ultrasound (US) in head and neck oncology. A systematic search of electronic databases (MEDLINE, PubMed, clinicaltrials.gov) was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of 15,080 initial articles identified, 34 studies were selected for in-depth analysis. Twenty-five out of 34 studies (74%) focused on the diagnostic application of US radiomics while 6 (18%) studies focused on response assessment and 3 (8%) studies utilized US radiomics for modeling normal tissue toxicity. Support vector machine (SVM) was the most commonly employed ML method (47%) followed by multivariate logistic regression (24%) and k-nearest neighbor analysis (21%). Only 11/34 (~32%) of the studies included an independent validation set. A majority of studies were retrospective in nature (76%) and based on single-center evaluation (85%) with variable numbers of patients (12-1609) and imaging datasets (32-1624). Despite these limitations, the application of ML methods resulted in improved diagnostic and prognostic performance of US highlighting the potential clinical utility of this approach.
放射组学是放射学领域中一个快速发展的研究领域,它涉及使用机器学习/人工智能(ML/AI)方法提取和建模高维定量成像特征。在本综述中,我们描述了已发表的关于应用ML方法提高超声(US)在头颈部肿瘤学中性能的临床证据。根据系统评价和Meta分析的首选报告项目(PRISMA)指南,对电子数据库(MEDLINE、PubMed、clinicaltrials.gov)进行了系统检索。在最初识别的15080篇文章中,选择了34项研究进行深入分析。34项研究中有25项(74%)专注于超声放射组学的诊断应用,6项(18%)研究专注于疗效评估,3项(8%)研究利用超声放射组学对正常组织毒性进行建模。支持向量机(SVM)是最常用的ML方法(47%),其次是多变量逻辑回归(24%)和k近邻分析(21%)。只有11/34(约32%)的研究包括独立验证集。大多数研究本质上是回顾性的(76%),基于单中心评估(85%),患者数量(12 - 1609)和成像数据集数量(32 - 1624)各不相同。尽管存在这些局限性,但ML方法的应用提高了超声的诊断和预后性能,突出了这种方法的潜在临床应用价值。
Pediatr Radiol. 2023-9
Explor Target Antitumor Ther. 2023
Cancers (Basel). 2023-3-18
BMC Med Res Methodol. 2021-5-6
J Med Internet Res. 2025-4-1
Quant Imaging Med Surg. 2024-7-1
Diagnostics (Basel). 2023-8-14
Cancers (Basel). 2022-12-17
Auris Nasus Larynx. 2022-2
Am Soc Clin Oncol Educ Book. 2021-3
Clin Transl Radiat Oncol. 2021-3-12