Suppr超能文献

采用雾状化学气相沉积法生长的掺锡氧化镓异质外延层的微观结构渐变特性

Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition.

作者信息

Kim Kyoung-Ho, Ha Minh-Tan, Lee Heesoo, Kim Minho, Nam Okhyun, Shin Yun-Ji, Jeong Seong-Min, Bae Si-Young

机构信息

Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju 52851, Korea.

School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea.

出版信息

Materials (Basel). 2022 Jan 29;15(3):1050. doi: 10.3390/ma15031050.

Abstract

This study examined the microstructural gradation in Sn-doped, n-type GaO epitaxial layers grown on a two-inch sapphire substrate using horizontal hot-wall mist chemical vapor deposition (mist CVD). The results revealed that, compared to a single GaO layer grown using a conventional single-step growth, the double GaO layers grown using a two-step growth process exhibited excellent thickness uniformity, surface roughness, and crystal quality. In addition, the spatial gradient of carrier concentration in the upper layer of the double layers was significantly affected by the mist flow velocity at the surface, regardless of the dopant concentration distribution of the underlying layer. Furthermore, the electrical properties of the single GaO layer could be attributed to various scattering mechanisms, whereas the carrier mobility of the double GaO layers could be attributed to Coulomb scattering owing to the heavily doped condition. It strongly suggests the two-step-grown, lightly-Sn-doped GaO layer is feasible for high power electronic devices.

摘要

本研究使用水平热壁雾状化学气相沉积(雾状CVD)法,对在两英寸蓝宝石衬底上生长的掺锡n型GaO外延层的微观结构渐变进行了研究。结果表明,与采用传统单步生长法生长的单层GaO相比,采用两步生长法生长的双层GaO在厚度均匀性、表面粗糙度和晶体质量方面表现出色。此外,双层上层载流子浓度的空间梯度受表面雾流速度的显著影响,而与下层的掺杂剂浓度分布无关。此外,单层GaO的电学性质可归因于各种散射机制,而双层GaO的载流子迁移率可归因于重掺杂条件下的库仑散射。这有力地表明,两步生长、轻掺锡的GaO层对于高功率电子器件是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeab/8838345/af0993470a9a/materials-15-01050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验