Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
Center for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore 560065, India.
Int J Mol Sci. 2022 Jan 31;23(3):1661. doi: 10.3390/ijms23031661.
The proteins from the Fanconi Anemia (FA) pathway of DNA repair maintain DNA replication fork integrity by preventing the unscheduled degradation of nascent DNA at regions of stalled replication forks. Here, we ask if the bacterial pathogen exploits the fork stabilisation machinery to generate double stand breaks (DSBs) and genomic instability. Specifically, we study if the virulence factor CagA generates host genomic DSBs through replication fork destabilisation and collapse. An inducible gastric cancer model was used to examine global CagA-dependent transcriptomic and proteomic alterations, using RNA sequencing and SILAC-based mass spectrometry, respectively. The transcriptional alterations were confirmed in gastric cancer cell lines infected with Functional analysis was performed using chromatin fractionation, pulsed-field gel electrophoresis (PFGE), and single molecule DNA replication/repair fiber assays. We found a core set of 31 DNA repair factors including the FA genes FANCI, FANCD2, BRCA1, and BRCA2 that were downregulated following CagA expression. infection of gastric cancer cell lines showed downregulation of the aforementioned FA genes in a CagA-dependent manner. Consistent with FA pathway downregulation, chromatin purification studies revealed impaired levels of Rad51 but higher recruitment of the nuclease MRE11 on the chromatin of CagA-expressing cells, suggesting impaired fork protection. In line with the above data, fibre assays revealed higher fork degradation, lower fork speed, daughter strands gap accumulation, and impaired re-start of replication forks in the presence of CagA, indicating compromised genome stability. By downregulating the expression of key DNA repair genes such as FANCI, FANCD2, BRCA1, and BRCA2, CagA compromises host replication fork stability and induces DNA DSBs through fork collapse. These data unveil an intriguing example of a bacterial virulence factor that induces genomic instability by interfering with the host replication fork stabilisation machinery.
DNA 修复的范可尼贫血(FA)途径中的蛋白质通过防止停滞复制叉处新生 DNA 的非计划性降解来维持复制叉的完整性。在这里,我们询问细菌病原体是否利用叉稳定机制产生双链断裂(DSB)和基因组不稳定性。具体来说,我们研究了毒力因子 CagA 是否通过复制叉失稳和崩溃产生宿主基因组 DSB。使用诱导性胃癌模型,分别使用 RNA 测序和 SILAC 基于质谱的方法,研究了全局 CagA 依赖性转录组和蛋白质组改变。在感染 功能性分析使用染色质分馏、脉冲场凝胶电泳(PFGE)和单分子 DNA 复制/修复纤维测定法进行。我们发现了一组核心的 31 个 DNA 修复因子,包括 FA 基因 FANCI、FANCD2、BRCA1 和 BRCA2,这些基因在 CagA 表达后下调。CagA 感染胃癌细胞系以 CagA 依赖性方式显示上述 FA 基因的下调。与 FA 途径下调一致,染色质纯化研究显示 Rad51 水平受损,但在表达 CagA 的细胞染色质上核酶 MRE11 的募集更高,表明叉保护受损。与上述数据一致,纤维测定法显示在 CagA 存在下叉降解增加、叉速度降低、子链间隙积累和复制叉重新启动受损,表明基因组稳定性受损。通过下调关键 DNA 修复基因如 FANCI、FANCD2、BRCA1 和 BRCA2 的表达,CagA 破坏宿主复制叉稳定性,并通过叉崩溃诱导 DNA DSB。这些数据揭示了一个有趣的例子,即细菌毒力因子通过干扰宿主复制叉稳定机制来诱导基因组不稳定性。