Suppr超能文献

发展中国家紧急医疗服务的可持续模式:一种使用部分外包和机器学习的新方法。

A Sustainable Model for Emergency Medical Services in Developing Countries: A Novel Approach Using Partial Outsourcing and Machine Learning.

作者信息

Rathore Nikki, Jain Pramod Kumar, Parida Manoranjan

机构信息

Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.

Department of Civil Engineering Indian Institute of Technology Roorkee, Roorkee, 247667, India.

出版信息

Risk Manag Healthc Policy. 2022 Feb 9;15:193-218. doi: 10.2147/RMHP.S338186. eCollection 2022.

Abstract

INTRODUCTION

Unlike Western countries, many low- and middle-income countries (LMIC), like India, have a de-centralized emergency medical services (EMS) involving both semi-government and non-government organizations. It is alarming that due to the absence of a common ecosystem, the utilization of resources is inefficient, which leads to shortage of available vehicles and larger response time. Fragmentation of emergency supply chain resources motivates us to propose a new vehicle routing and scheduling model equipped with novel features to ensure minimal response time using existing resources.

MATERIALS AND METHODS

The data set of medical and fire-related emergencies from January 2018 to May 2018 of Uttarakhand State in India was provided by GVK Emergency Management and Research Institute (GVK EMRI) also known as 108 EMSs was used in the study. The proposed model integrates all the available EMS vehicles including partial outsourcing to non-ambulatory vehicles like police vans, taxis, etc., using a novel two-echelon heuristic approach. In the first stage, an offline learning model is developed to yield the deployment strategy for EMS vehicles. Seven well researched machine learning (ML) algorithms were analyzed for parameter prediction namely random forest (RF), convolutional neural network (CNN), k-nearest neighbor (KNN), classification and regression tree (CART), support vector machine (SVM), logistic regression (LR), and linear discriminant analysis (LDA). In the second stage, a real-time routing model is proposed for EMS vehicle routing at the time of emergency, considering partial outsourcing.

RESULTS AND DISCUSSION

The results indicate that the RF classifier outperforms the LR, LDA, SVM, CNN, CART and NB classifier in terms of both accuracy as well as F-1 score. The proposed vehicle routing and scheduling model for automated decision-making shows an improvement of 42.1%, 54%, 27.9% and 62% in vehicle assignment time, vehicle travel time from base to scene, travel time from scene to hospital, and total response time, respectively, in urban areas.

摘要

引言

与西方国家不同,许多低收入和中等收入国家(LMIC),如印度,拥有分散的紧急医疗服务(EMS),涉及半政府和非政府组织。令人担忧的是,由于缺乏共同的生态系统,资源利用效率低下,导致可用车辆短缺和响应时间延长。紧急供应链资源的分散促使我们提出一种具有新特性的车辆路径规划和调度模型,以确保利用现有资源将响应时间降至最低。

材料与方法

本研究使用了印度北阿坎德邦2018年1月至2018年5月与医疗和火灾相关的紧急情况数据集,该数据集由GVK紧急管理和研究机构(GVK EMRI)提供,也被称为108紧急医疗服务。所提出的模型使用一种新颖的两级启发式方法,整合了所有可用的紧急医疗服务车辆,包括部分外包给非急救车辆,如警车、出租车等。在第一阶段,开发了一个离线学习模型以生成紧急医疗服务车辆的部署策略。分析了七种经过充分研究的机器学习(ML)算法用于参数预测,即随机森林(RF)、卷积神经网络(CNN)、k近邻(KNN)、分类与回归树(CART)、支持向量机(SVM)、逻辑回归(LR)和线性判别分析(LDA)。在第二阶段,提出了一个实时路径规划模型,用于在紧急情况下考虑部分外包的紧急医疗服务车辆路径规划。

结果与讨论

结果表明,RF分类器在准确性和F-1分数方面均优于LR、LDA、SVM、CNN、CART和NB分类器。所提出的用于自动决策的车辆路径规划和调度模型在城市地区的车辆分配时间、从基地到现场的车辆行驶时间、从现场到医院的行驶时间和总响应时间分别提高了42.1%、54%、27.9%和62%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f44/8841749/37da5e149af5/RMHP-15-193-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验