Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
Shanghai Xunyin Biotechnology Co., Ltd., Shanghai 201802, China.
Genomics Proteomics Bioinformatics. 2023 Apr;21(2):414-426. doi: 10.1016/j.gpb.2022.07.005. Epub 2022 Aug 5.
Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.
下一代测序技术既促进了人类基因组中变异的发现,也加剧了致病性变异识别的挑战。在这项研究中,我们开发了错义变异致病性预测工具 (mvPPT),这是一种基于梯度提升的高度敏感和准确的错义变异分类器。mvPPT 采用具有广泛变异谱的高可信度训练集,并提取了三类特征,包括来自现有预测工具的分数、频率(等位基因频率、氨基酸频率和基因型频率)和基因组上下文。与已建立的预测器相比,mvPPT 在所有测试集中都表现出了优越的性能,无论数据来源如何。此外,我们的研究还为训练集和特征选择策略提供了指导,并揭示了高度相关的特征,这可能为变异的致病性提供进一步的生物学见解。mvPPT 可在 http://www.mvppt.club/ 免费获取。