Suppr超能文献

L-蛋氨酸可能通过干扰RNA聚合酶的机制来调节新型冠状病毒2的组装。

l-Methionine may modulate the assembly of SARS-CoV-2 by interfering with the mechanism of RNA polymerase.

作者信息

Benavides Maximo A

机构信息

Bio Medical Science World Corp., Houston, TX 77030, USA.

出版信息

Med Hypotheses. 2022 Apr;161:110798. doi: 10.1016/j.mehy.2022.110798. Epub 2022 Feb 14.

Abstract

Coronaviruses have received worldwide attention following several severe acute respiratory syndrome (SARS) epidemics. In 2019, the first case of coronavirus disease (COVID-19) caused by a novel coronavirus (SARS-coronavirus 2 [CoV-2]) was reported. SARS-CoV-2 employs RNA-dependent RNA polymerase (RdRp) for genome replication and gene transcription. Recent studies have identified a sulfur (S) metal-binding site in the zinc center structures of the RdRp complex. This metal-binding site is essential for the proper functioning of the viral helicase. We hypothesize that the use of essential nutrients can permeabilize the cell membranes. The oxidation of the metal-binding site occurs via analogs of the essential S-containing amino acid, l-Methionine. l-Methionine can operate as a carrier, and its binding would cause the potential disassembly of RdRp via the S complex and drive methyl donors via a possible countercurrent exchange mechanism and electrical-chemical gradient leading to SARS-CoV-2 replication failure. Our previously published hypothesis on the control of cancer cell proliferation suggests that the presence of a novel disulfide/methyl- adenosine triphosphate pump as an energy source would allow this process. The S binding site in l-Methionine serves as a potential target cofactor for SARS-CoV RdRp, thus providing a possible avenue for the future development of vaccines and antiviral therapeutic strategies to combat COVID-19.

摘要

在几次严重急性呼吸综合征(SARS)疫情之后,冠状病毒受到了全球关注。2019年,首例由新型冠状病毒(严重急性呼吸综合征冠状病毒2 [CoV-2])引起的冠状病毒病(COVID-19)被报道。SARS-CoV-2利用RNA依赖性RNA聚合酶(RdRp)进行基因组复制和基因转录。最近的研究在RdRp复合物的锌中心结构中确定了一个硫(S)金属结合位点。这个金属结合位点对于病毒解旋酶的正常功能至关重要。我们假设使用必需营养素可以使细胞膜通透。金属结合位点的氧化通过必需含硫氨基酸l-甲硫氨酸的类似物发生。l-甲硫氨酸可以作为载体,其结合会通过S复合物导致RdRp可能的解离,并通过可能的逆流交换机制和电化学梯度驱动甲基供体,从而导致SARS-CoV-2复制失败。我们之前发表的关于控制癌细胞增殖的假设表明,存在一种新型二硫键/甲基-三磷酸腺苷泵作为能量来源将允许这个过程。l-甲硫氨酸中的S结合位点作为SARS-CoV RdRp的潜在靶辅因子,从而为未来开发对抗COVID-19的疫苗和抗病毒治疗策略提供了一条可能的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f3/8841269/4b04c084f120/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验