Cacciapaglia Giacomo, Cot Corentin, de Hoffer Adele, Hohenegger Stefan, Sannino Francesco, Vatani Shahram
Institut de Physique des 2 Infinis (IP2I) de Lyon, CNRS/IN2P3, UMR5822, 69622 Villeurbanne, France.
Université de Lyon, Université Claude Bernard Lyon 1, 69001 Lyon, France.
Physica A. 2022 Jun 15;596:127071. doi: 10.1016/j.physa.2022.127071. Epub 2022 Feb 16.
We propose a physics-inspired mathematical model underlying the temporal evolution of competing virus variants that relies on the existence of (quasi) fixed points capturing the large time scale invariance of the dynamics. To motivate our result we first modify the time-honoured compartmental models of the SIR type to account for the existence of competing variants and then show how their evolution can be naturally re-phrased in terms of flow equations ending at quasi fixed points. As the natural next step we employ (near) scale invariance to organise the time evolution of the competing variants within the effective description of the framework. We test the resulting theory against the time evolution of COVID-19 virus variants that validate the theory empirically.
我们提出了一个受物理学启发的数学模型,该模型是关于竞争病毒变体时间演化的基础,它依赖于(准)不动点的存在,这些不动点捕捉了动力学的大时间尺度不变性。为了推动我们的研究成果,我们首先修改了经典的SIR型分区模型,以考虑竞争变体的存在,然后展示如何根据终止于准不动点的流动方程自然地重新表述它们的演化。作为自然的下一步,我们利用(近似)尺度不变性在该框架的有效描述内组织竞争变体的时间演化。我们根据新冠病毒变体的时间演化来检验所得理论,从经验上验证了该理论。