Suppr超能文献

与现有标准相比,机器学习模型用于内镜逆行胰胆管造影确诊的胆总管结石的无创预测

Machine learning models compared to existing criteria for noninvasive prediction of endoscopic retrograde cholangiopancreatography-confirmed choledocholithiasis.

作者信息

Dalai Camellia, Azizian John, Trieu Harry, Rajan Anand, Chen Formosa, Dong Tien, Beaven Simon, Tabibian James H

机构信息

UCLA-Olive View Internal Medicine Residency Program, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA.

Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

Liver Res. 2021 Dec;5(4):224-231. doi: 10.1016/j.livres.2021.10.001. Epub 2021 Oct 22.

Abstract

BACKGROUND AND AIMS

Noninvasive predictors of choledocholithiasis have generally exhibited marginal performance characteristics. We aimed to identify noninvasive independent predictors of endoscopic retrograde cholangiopancreatography (ERCP)-confirmed choledocholithiasis and accordingly developed predictive machine learning models (MLMs).

METHODS

Clinical data of consecutive patients undergoing first-ever ERCP for suspected choledocholithiasis from 2015-2019 were abstracted from a prospectively-maintained database. Multiple logistic regression was used to identify predictors of ERCP-confirmed choledocholithiasis. MLMs were then trained to predict ERCP-confirmed choledocholithiasis using pre-ERCP ultrasound (US) imaging only and separately using all available noninvasive imaging (US/CT/magnetic resonance cholangiopancreatography). The diagnostic performance of American Society for Gastrointestinal Endoscopy (ASGE) "high-likelihood" criteria was compared to MLMs.

RESULTS

We identified 270 patients (mean age 46 years, 62.2% female, 73.7% Hispanic/Latino, 59% with noninvasive imaging positive for choledocholithiasis) with native papilla who underwent ERCP for suspected choledocholithiasis, of whom 230 (85.2%) were found to have ERCP-confirmed choledocholithiasis. Logistic regression identified choledocholithiasis on noninvasive imaging (odds ratio (OR) = 3.045, = 0.004) and common bile duct (CBD) diameter on noninvasive imaging (OR=1.157, = 0.011) as predictors of ERCP-confirmed choledocholithiasis. Among the various MLMs trained, the random forest-based MLM performed best; sensitivity was 61.4% and 77.3% and specificity was 100% and 75.0%, using US-only and using all available imaging, respectively. ASGE high-likelihood criteria demonstrated sensitivity of 90.9% and specificity of 25.0%; using cut-points achieving this specificity, MLMs achieved sensitivity up to 97.7%.

CONCLUSIONS

MLMs using age, sex, race, presence of diabetes, fever, body mass index (BMI), total bilirubin, maximum CBD diameter, and choledocholithiasis on pre-ERCP noninvasive imaging predict ERCP-confirmed choledocholithiasis with good sensitivity and specificity and outperform the ASGE criteria for patients with suspected choledocholithiasis.

摘要

背景与目的

胆总管结石的非侵入性预测指标通常表现出有限的性能特征。我们旨在识别经内镜逆行胰胆管造影(ERCP)证实的胆总管结石的非侵入性独立预测指标,并据此开发预测性机器学习模型(MLMs)。

方法

从一个前瞻性维护的数据库中提取2015年至2019年因疑似胆总管结石首次接受ERCP的连续患者的临床数据。采用多因素逻辑回归分析来识别ERCP证实的胆总管结石的预测指标。然后分别使用ERCP前仅超声(US)成像以及所有可用的非侵入性成像(US/CT/磁共振胰胆管造影)训练MLMs来预测ERCP证实的胆总管结石。将美国胃肠内镜学会(ASGE)“高可能性”标准的诊断性能与MLMs进行比较。

结果

我们纳入了270例因疑似胆总管结石接受ERCP的具有天然乳头的患者(平均年龄46岁,62.2%为女性,73.7%为西班牙裔/拉丁裔,59%的非侵入性成像显示胆总管结石阳性),其中230例(85.2%)被发现有ERCP证实的胆总管结石。逻辑回归分析确定非侵入性成像显示胆总管结石(比值比(OR)=3.045,P=0.004)以及非侵入性成像显示的胆总管(CBD)直径(OR=1.157,P=0.011)是ERCP证实的胆总管结石的预测指标。在训练的各种MLMs中,基于随机森林的MLM表现最佳;仅使用US成像时敏感性为61.4%,特异性为100%,使用所有可用成像时敏感性为77.3%,特异性为75.0%。ASGE高可能性标准的敏感性为90.9%,特异性为25.0%;使用达到该特异性的切点时,MLMs的敏感性高达97.7%。

结论

使用年龄、性别、种族、糖尿病、发热、体重指数(BMI)、总胆红素、ERCP前非侵入性成像显示的最大CBD直径以及胆总管结石情况的MLMs能够以良好的敏感性和特异性预测ERCP证实的胆总管结石,并且对于疑似胆总管结石的患者其表现优于ASGE标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18f/11791832/f62b5f19feb1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验