Division of Endocrinology (I.S., A.E.L., J.K., M.E.G., A.V.L., J.M., S.S.A., D.-J.S., S.C., S.B.B.), Boston Children's Hospital, Harvard Medical School, MA.
Broad Institute of MIT and Harvard, Cambridge, MA (K.B., C.B.C.).
Circulation. 2022 Mar 29;145(13):969-982. doi: 10.1161/CIRCULATIONAHA.120.045373. Epub 2022 Feb 23.
The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies.
To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and simvastatin in a double-blind crossover study.
Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of . FoxO1 is inhibited by insulin and required for the production of 12α-hydroxylated bile acids, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of normalized 12α-hydroxylated bile acid levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30), as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and low-density lipoprotein cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20).
Insulin, by inhibiting FoxO1 in the liver, reduces 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.
尽管在血糖控制方面取得了显著进展,甚至广泛应用了胆固醇合成抑制剂,但 1 型糖尿病患者的心血管疾病风险仍然极高。因此,更深入地了解胰岛素对胆固醇代谢的调节作用及其在 1 型糖尿病中的紊乱,可能会揭示出更好的治疗策略。
为了确定胰岛素控制血浆胆固醇水平的机制,我们敲低了胰岛素受体、FoxO1 和关键的胆汁酸合成酶 CYP8B1。我们测量了胆汁酸组成、胆固醇吸收和血浆胆固醇。与此同时,我们在一项双盲交叉研究中,测量了接受依折麦布和辛伐他汀治疗的 1 型糖尿病患者的胆固醇吸收和合成标志物。
肝脏胰岛素受体缺失的小鼠表现出明显的 12α-羟化胆汁酸、胆固醇吸收和血浆胆固醇增加。这种表型完全被肝脏 FoxO1 缺失所逆转。FoxO1 受胰岛素抑制,是产生 12α-羟化胆汁酸所必需的,后者促进肠道胆固醇吸收并抑制肝脏胆固醇合成。FoxO1 敲低使肝脏胰岛素受体缺失的小鼠(n=5-30)以及 1 型糖尿病的小鼠模型(n=5-22)中的 12α-羟化胆汁酸水平正常化,并完全预防了高胆固醇血症。与此同时,胆固醇吸收抑制剂依折麦布使 1 型糖尿病患者的胆固醇吸收和低密度脂蛋白胆固醇正常化,效果与胆固醇合成抑制剂辛伐他汀相当(n=20),甚至更好。
胰岛素通过抑制肝脏中的 FoxO1,降低 12α-羟化胆汁酸、胆固醇吸收和血浆胆固醇水平。因此,1 型糖尿病导致了一组独特的胆固醇代谢紊乱,表现为吸收增加而不是合成增加。这些紊乱可以通过依折麦布逆转,但不能通过他汀类药物逆转,他汀类药物目前是 1 型糖尿病患者降脂治疗的一线药物。综上所述,这些数据表明,1 型糖尿病患者的降脂治疗可能需要采用个性化方法,并且特别需要在这组患者中进行进一步的研究。