Suppr超能文献

抗菌级联催化谷胱甘肽耗竭型 MOF 纳米反应器。

Antibacterial Cascade Catalytic Glutathione-Depleting MOF Nanoreactors.

机构信息

Department of Biomaterials, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11104-11115. doi: 10.1021/acsami.1c24231. Epub 2022 Feb 24.

Abstract

Nanozymes with peroxidase-like activity have great application potential in combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, the near-neutral pH and high glutathione (GSH) levels in the bacterial infection microenvironment severely limit their applications in antibacterial therapy. In this work, a metal-organic framework (MOF)-based cascade catalytic glutathione-depleting system named MnFeO@MIL/Au&GOx (MMAG) was constructed. The MMAG cascade-catalyzed glucose to provide H and produces a large amount of toxic reactive oxygen species. In addition, MMAG consumed GSH, which can result in bacterial death more easily. Systematic antibacterial experiments illustrated that MMAG has superior antibacterial effects on both Gram-positive bacteria and Gram-negative bacteria.

摘要

具有过氧化物酶样活性的纳米酶在对抗致病性细菌感染方面具有巨大的应用潜力,有望成为抗生素的替代品。然而,细菌感染微环境中的近中性 pH 值和高谷胱甘肽 (GSH) 水平严重限制了它们在抗菌治疗中的应用。在这项工作中,构建了一种基于金属有机骨架 (MOF) 的级联催化谷胱甘肽耗竭系统,命名为 MnFeO@MIL/Au&GOx (MMAG)。MMAG 级联催化葡萄糖提供 H+并产生大量毒性活性氧。此外,MMAG 消耗 GSH,这使得细菌更容易死亡。系统的抗菌实验表明,MMAG 对革兰氏阳性菌和革兰氏阴性菌均具有优异的抗菌效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验