UMR Stabilité Génétique Cellules Souches et Radiations, INSERM, iRCM/IBFJ CEA, Université de Paris and Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France.
Genes (Basel). 2022 Jan 22;13(2):198. doi: 10.3390/genes13020198.
DNA double-strand breaks (DSBs) are a deleterious form of DNA damage, which must be robustly addressed to ensure genome stability. Defective repair can result in chromosome loss, point mutations, loss of heterozygosity or chromosomal rearrangements, which could lead to oncogenesis or cell death. We explore the requirements for the successful repair of DNA DSBs by non-homologous end joining and homology-directed repair (HDR) mechanisms in relation to genome folding and dynamics. On the occurrence of a DSB, local and global chromatin composition and dynamics, as well as 3D genome organization and break localization within the nuclear space, influence how repair proceeds. The cohesin complex is increasingly implicated as a key regulator of the genome, influencing chromatin composition and dynamics, and crucially genome organization through folding chromosomes by an active loop extrusion mechanism, and maintaining sister chromatid cohesion. Here, we consider how this complex is now emerging as a key player in the DNA damage response, influencing repair pathway choice and efficiency.
DNA 双链断裂(DSBs)是一种有害的 DNA 损伤形式,必须得到稳健的处理,以确保基因组的稳定性。修复缺陷可能导致染色体丢失、点突变、杂合性丢失或染色体重排,从而导致癌变或细胞死亡。我们探讨了非同源末端连接和同源定向修复(HDR)机制在与基因组折叠和动力学相关的情况下成功修复 DNA DSB 的要求。在 DSB 发生时,局部和全局染色质组成和动力学,以及 3D 基因组组织和核空间内的断裂定位,都会影响修复的进行。黏合蛋白复合物越来越被认为是基因组的关键调节因子,通过活性环挤出机制影响染色质组成和动力学,并通过折叠染色体来维持姐妹染色单体的黏合,从而对基因组组织产生关键影响。在这里,我们考虑了这个复合物是如何作为 DNA 损伤反应中的关键参与者出现的,影响修复途径的选择和效率。