Suppr超能文献

基于脑电图的虚拟环境交互诱发情绪神经状态识别。

EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction.

机构信息

Yonsei Graduate Program in Cognitive Science, Yonsei University, Seoul 03722, Korea.

Department of Psychology, Yonsei University, Seoul 03722, Korea.

出版信息

Int J Environ Res Public Health. 2022 Feb 14;19(4):2158. doi: 10.3390/ijerph19042158.

Abstract

Classifying emotional states is critical for brain-computer interfaces and psychology-related domains. In previous studies, researchers have tried to identify emotions using neural data such as electroencephalography (EEG) signals or brain functional magnetic resonance imaging (fMRI). In this study, we propose a machine learning framework for emotion state classification using EEG signals in virtual reality (VR) environments. To arouse emotional neural states in brain signals, we provided three VR stimuli scenarios to 15 participants. Fifty-four features were extracted from the collected EEG signals under each scenario. To find the optimal classification in our research design, three machine learning algorithms (XGBoost classifier, support vector classifier, and logistic regression) were applied. Additionally, various class conditions were used in machine learning classifiers to validate the performance of our framework. To evaluate the classification performance, we utilized five evaluation metrics (precision, recall, f1-score, accuracy, and AUROC). Among the three classifiers, the XGBoost classifiers showed the best performance under all experimental conditions. Furthermore, the usability of features, including differential asymmetry and frequency band pass categories, were checked from the feature importance of XGBoost classifiers. We expect that our framework can be applied widely not only to psychological research but also to mental health-related issues.

摘要

情绪状态的分类对于脑机接口和心理学相关领域至关重要。在以前的研究中,研究人员试图通过神经数据(如脑电图(EEG)信号或脑功能磁共振成像(fMRI))来识别情绪。在这项研究中,我们提出了一种使用虚拟现实(VR)环境中的 EEG 信号进行情绪状态分类的机器学习框架。为了在脑信号中引起情绪神经状态,我们为 15 名参与者提供了三个 VR 刺激场景。从每个场景下收集的 EEG 信号中提取了 54 个特征。为了在我们的研究设计中找到最佳分类,我们应用了三种机器学习算法(XGBoost 分类器、支持向量分类器和逻辑回归)。此外,还在机器学习分类器中使用了各种分类条件来验证我们框架的性能。为了评估分类性能,我们使用了五个评估指标(精度、召回率、F1 分数、准确性和 AUROC)。在这三个分类器中,XGBoost 分类器在所有实验条件下均表现出最佳性能。此外,还从 XGBoost 分类器的特征重要性中检查了包括差分不对称和频带通过类别在内的特征的可用性。我们希望我们的框架不仅可以广泛应用于心理学研究,还可以应用于与心理健康相关的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8e/8872045/ef83828584af/ijerph-19-02158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验