Suppr超能文献

用于生物图像分析的深度学习技术

Deep Learning-Enabled Technologies for Bioimage Analysis.

作者信息

Rabbi Fazle, Dabbagh Sajjad Rahmani, Angin Pelin, Yetisen Ali Kemal, Tasoglu Savas

机构信息

Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey.

Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey.

出版信息

Micromachines (Basel). 2022 Feb 6;13(2):260. doi: 10.3390/mi13020260.

Abstract

Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases.

摘要

深度学习(DL)是机器学习(ML)的一个子领域,最近已证明其在显著改善生物医学和临床应用中的量化和分类工作流程方面的潜力。在从深度学习中受益匪浅的最终应用中,细胞形态量化是先驱之一。在这里,我们首先简要解释深度学习的基本概念,然后回顾一些在胚胎学、即时排卵检测、作为胎儿心脏妊娠预测工具、通过癌症组织学图像分类进行癌症诊断、常染色体多囊肾病和慢性肾病等领域中新兴的基于深度学习的细胞形态量化应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ca/8880650/24956c4ab997/micromachines-13-00260-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验