文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金属纳米颗粒作为一种有前途的靶向癌症治疗技术。

Metal nanoparticles as a promising technology in targeted cancer treatment.

机构信息

Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.

Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.

出版信息

Drug Deliv. 2022 Dec;29(1):664-678. doi: 10.1080/10717544.2022.2039804.


DOI:10.1080/10717544.2022.2039804
PMID:35209786
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8890514/
Abstract

Traditional anticancer treatments have several limitations, but cancer is still one of the deadliest diseases. As a result, new anticancer drugs are required for the treatment of cancer. The use of metal nanoparticles (NPs) as alternative chemotherapeutic drugs is on the rise in cancer research. Metal NPs have the potential for use in a wide range of applications. Natural or surface-induced anticancer effects can be found in metals. The focus of this review is on the therapeutic potential of metal-based NPs. The potential of various types of metal NPs for tumor targeting will be discussed for cancer treatment. The application of metal NPs for solid tumors will be reviewed. Risk factors involved in the clinical application of metal NPs will also be summarized.

摘要

传统的抗癌疗法有几个局限性,但癌症仍然是最致命的疾病之一。因此,需要新的抗癌药物来治疗癌症。金属纳米粒子(NPs)作为替代化疗药物在癌症研究中越来越受到关注。金属 NPs 具有广泛应用的潜力。金属中存在天然或表面诱导的抗癌作用。本综述的重点是基于金属的 NPs 的治疗潜力。将讨论各种类型的金属 NPs 对肿瘤靶向治疗癌症的潜力。综述了金属 NPs 在实体瘤中的应用。还将总结金属 NPs 临床应用中涉及的风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/7e43f190fe18/IDRD_A_2039804_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/d511c8479029/IDRD_A_2039804_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/ed74f1dd4323/IDRD_A_2039804_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/dbfa921916c1/IDRD_A_2039804_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/352afde01f93/IDRD_A_2039804_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/7ce6ad6a1b78/IDRD_A_2039804_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/d32a91974717/IDRD_A_2039804_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/a148cca098b1/IDRD_A_2039804_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/7e43f190fe18/IDRD_A_2039804_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/d511c8479029/IDRD_A_2039804_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/ed74f1dd4323/IDRD_A_2039804_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/dbfa921916c1/IDRD_A_2039804_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/352afde01f93/IDRD_A_2039804_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/7ce6ad6a1b78/IDRD_A_2039804_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/d32a91974717/IDRD_A_2039804_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/a148cca098b1/IDRD_A_2039804_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/8890514/7e43f190fe18/IDRD_A_2039804_F0008_C.jpg

相似文献

[1]
Metal nanoparticles as a promising technology in targeted cancer treatment.

Drug Deliv. 2022-12

[2]
Recent advances in metal nanoparticles in cancer therapy.

J Drug Target. 2017-11-15

[3]
Theranostic Nanoparticles for RNA-Based Cancer Treatment.

Acc Chem Res. 2019-5-28

[4]
Metal-based nanoparticle in cancer treatment: lessons learned and challenges.

Front Bioeng Biotechnol. 2024-7-11

[5]
Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers.

Curr Top Med Chem. 2020

[6]
Actively Targeted Nanoparticles for Drug Delivery to Tumor.

Curr Drug Metab. 2016

[7]
New use of metals as nanosized radioenhancers.

Anticancer Res. 2014-1

[8]
A review of small molecules and drug delivery applications using gold and iron nanoparticles.

Int J Nanomedicine. 2019-3-11

[9]
Folate-receptor-targeted laser-activable poly(lactide--glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.

Int J Nanomedicine. 2018-9-6

[10]
Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine.

Int J Mol Sci. 2020-8-30

引用本文的文献

[1]
Synthesis, Characterization, and In Vitro Cytotoxic Evaluation of Neodymium-Doped Cobalt Ferrite Nanoparticles on Human Cancer Cell Lines.

Materials (Basel). 2025-8-21

[2]
Nickel nanoparticles: a novel platform for cancer-targeted delivery and multimodal therapy.

Front Drug Deliv. 2025-7-30

[3]
Innovative nanoparticle-based therapeutic strategies against glioblastoma multiform: a focus on enhanced delivery systems and efficacy.

Front Bioeng Biotechnol. 2025-7-23

[4]
Advances in nanoparticle-mediated cancer therapeutics: Current research and future perspectives.

Cancer Pathog Ther. 2024-12-9

[5]
Riding the wave of innovation: nanotechnology in nucleic acid-based cancer therapy.

3 Biotech. 2025-7

[6]
Recent developments on copper incorporation of polymer thin films for cancer cell treatment: review.

Med Oncol. 2025-6-29

[7]
Influence of capping agents on physicochemical properties and leukemic cytotoxicity of copper oxide nanoparticles biosynthesized using Caesalpinia sappan extract.

PLoS One. 2025-6-26

[8]
Enzyme-triggered aggregation of upconversion nanoparticles for targeted photodynamic therapy NIR irradiation.

Nanoscale Adv. 2025-4-7

[9]
Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms.

Pharmaceutics. 2025-2-26

[10]
Metal-based nanoplatforms for enhancing the biomedical applications of berberine: current progress and future directions.

Nanomedicine (Lond). 2025-4

本文引用的文献

[1]
Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications.

RSC Adv. 2020-8-19

[2]
A doxorubicin-platinum conjugate system: impacts on PI3K/AKT actuation and apoptosis in breast cancer cells.

RSC Adv. 2021-1-25

[3]
Characterization, Antimicrobial and Anticancer Properties of Palladium Nanoparticles Biosynthesized Optimally Using Saudi Propolis.

Nanomaterials (Basel). 2021-10-11

[4]
Nanoparticle-based drug delivery systems for cancer therapy.

Smart Mater Med. 2020

[5]
The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer.

Cells. 2021-7-29

[6]
An updated overview on metal nanoparticles toxicity.

Semin Cancer Biol. 2021-11

[7]
Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches.

Nanomedicine (Lond). 2021-7

[8]
Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity.

Nat Cancer. 2020-2

[9]
Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives.

Int J Nanomedicine. 2021

[10]
Combined Photothermal and Ionizing Radiation Sensitization of Triple-Negative Breast Cancer Using Triangular Silver Nanoparticles.

Int J Nanomedicine. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索