Liu Caizhi, Gao Xingcheng, Li Yuheng, Sun Weijia, Xu Youjia, Tan Yingjun, Du Ruikai, Zhong Guohui, Zhao Dingsheng, Liu Zizhong, Jin Xiaoyan, Zhao Yinlong, Wang Yinbo, Yuan Xinxin, Pan Junjie, Yuan Guodong, Li Youyou, Xing Wenjuan, Kan Guanghan, Wang Yanqing, Li Qi, Han Xuan, Li Jianwei, Ling Shukuan, Li Yingxian
State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China.
Bone Res. 2022 Feb 24;10(1):18. doi: 10.1038/s41413-022-00191-3.
Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lncRNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lncRNAs in osteoblasts and identified Neat1, the most clearly decreased lncRNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 mRNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lncRNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight- or bedrest-induced bone loss and age-related osteoporosis.
机械刺激在骨重塑中起着重要作用。运动诱导的机械负荷可增强骨强度,而机械卸载则导致骨质流失。越来越多的证据表明,长链非编码RNA(lncRNAs)在多种生物学、生理学和病理学背景中发挥关键作用。然而,lncRNAs在机械转导中的作用及其与骨形成的关系仍不清楚。在本研究中,我们在成骨细胞中筛选了机械传感lncRNAs,并鉴定出Neat1,它是模拟微重力下最明显减少的lncRNA。值得注意的是,不仅Neat1的表达,而且Neat1形成的特定旁斑结构对不同的机械刺激都很敏感,这与成骨细胞功能密切相关。旁斑在模拟微重力下呈现小的点状聚集体,在机械负荷下呈现拉长的扁球形或更大的不规则结构。Neat1基因敲除小鼠表现出骨形成紊乱、骨结构和强度受损以及骨量减少。成骨细胞中Neat1的缺乏降低了成骨细胞对机械刺激的反应。在体内,小鼠中Neat1基因敲除减弱了对机械负荷和后肢卸载刺激的骨表型。机制上,旁斑促进E3泛素连接酶Smurf1 mRNA的核滞留并下调其翻译,从而抑制泛素化介导的成骨细胞主转录因子Runx2(Smurf1的靶标)的降解。我们的研究表明,Neat1在机械刺激下的成骨细胞功能中起重要作用,这为lncRNA组装结构响应机械刺激的功能提供了范例,并为长期太空飞行或卧床休息引起的骨质流失和年龄相关性骨质疏松症提供了治疗策略。