Suppr超能文献

糖尿病患者慢性肾病进展的全国性预测模型的开发与应用

Development and deployment of a nationwide predictive model for chronic kidney disease progression in diabetic patients.

作者信息

Fu Zhiyan, Wang Zhiyu, Clemente Karen, Jaisinghani Mohit, Poon Ken Mei Ting, Yeo Anthony Wee Teo, Ang Gia Lee, Liew Adrian, Lim Chee Kong, Foo Marjorie Wai Yin, Chow Wai Leng, Ta Wee An

机构信息

Integrated Health Information Systems (IHIS), Singapore, Singapore.

Mount Elizabeth Novena Hospital, Singapore, Singapore.

出版信息

Front Nephrol. 2024 Jan 8;3:1237804. doi: 10.3389/fneph.2023.1237804. eCollection 2023.

Abstract

AIM

Chronic kidney disease (CKD) is a major complication of diabetes and a significant disease burden on the healthcare system. The aim of this work was to apply a predictive model to identify high-risk patients in the early stages of CKD as a means to provide early intervention to avert or delay kidney function deterioration.

MATERIALS AND METHODS

Using the data from the National Diabetes Database in Singapore, we applied a machine-learning algorithm to develop a predictive model for CKD progression in diabetic patients and to deploy the model nationwide.

RESULTS

Our model was rigorously validated. It outperformed existing models and clinician predictions. The area under the receiver operating characteristic curve (AUC) of our model is 0.88, with the 95% confidence interval being 0.87 to 0.89. In recognition of its higher and consistent accuracy and clinical usefulness, our CKD model became the first clinical model deployed nationwide in Singapore and has been incorporated into a national program to engage patients in long-term care plans in battling chronic diseases. The risk score generated by the model stratifies patients into three risk levels, which are embedded into the Diabetes Patient Dashboard for clinicians and care managers who can then allocate healthcare resources accordingly.

CONCLUSION

This project provided a successful example of how an artificial intelligence (AI)-based model can be adopted to support clinical decision-making nationwide.

摘要

目的

慢性肾脏病(CKD)是糖尿病的主要并发症,也是医疗系统的重大疾病负担。本研究的目的是应用一种预测模型来识别CKD早期的高危患者,以此作为提供早期干预以避免或延缓肾功能恶化的手段。

材料与方法

利用新加坡国家糖尿病数据库的数据,我们应用机器学习算法开发了一种预测糖尿病患者CKD进展的模型,并在全国范围内应用该模型。

结果

我们的模型经过了严格验证。它优于现有模型和临床医生的预测。我们模型的受试者操作特征曲线(AUC)下面积为0.88,95%置信区间为0.87至0.89。鉴于其更高且一致的准确性和临床实用性,我们的CKD模型成为新加坡首个在全国范围内应用的临床模型,并已被纳入一项全国计划,以使患者参与慢性病长期护理计划。该模型生成的风险评分将患者分为三个风险级别,这些级别被嵌入糖尿病患者仪表板,供临床医生和护理管理人员使用,他们随后可以据此分配医疗资源。

结论

该项目提供了一个成功范例,展示了如何采用基于人工智能(AI)的模型在全国范围内支持临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a252/10800693/cf996b7583a6/fneph-03-1237804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验