Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America.
School of Biomedical and Imaging Sciences, Kings College, London, UK.
Schizophr Res. 2022 Jul;245:77-89. doi: 10.1016/j.schres.2022.02.002. Epub 2022 Feb 23.
Recent advances in computational psychiatry have provided unique insights into the neural and cognitive underpinnings of psychotic symptoms. In particular, a host of new data has demonstrated the utility of computational frameworks for understanding how hallucinations might arise from alterations in typical perceptual processing. Of particular promise are models based in Bayesian inference that link hallucinatory perceptual experiences to latent states that may drive them. In this piece, we move beyond these findings to ask: how and why do these latent states arise, and how might we take advantage of heterogeneity in that process to develop precision approaches to the treatment of hallucinations? We leverage specific models of Bayesian inference to discuss components that might lead to the development of hallucinations. Using the unifying power of our model, we attempt to place disparate findings in the study of psychotic symptoms within a common framework. Finally, we suggest directions for future elaboration of these models in the service of a more refined psychiatric nosology based on predictable, testable, and ultimately treatable information processing derangements.
计算精神病学的最新进展为理解精神病症状的神经和认知基础提供了独特的视角。特别是,大量新数据表明,计算框架对于理解幻觉如何源于典型感知处理的改变具有实用性。特别有前途的是基于贝叶斯推断的模型,该模型将幻觉感知体验与可能驱动它们的潜在状态联系起来。在这篇文章中,我们超越了这些发现,提出了这样的问题:这些潜在状态是如何以及为什么产生的,我们如何利用这一过程中的异质性来开发针对幻觉的精准治疗方法?我们利用贝叶斯推断的具体模型来讨论可能导致幻觉发展的因素。我们使用模型的统一力量,试图将精神症状研究中的不同发现置于一个共同的框架内。最后,我们提出了进一步阐述这些模型的方向,以更好地基于可预测、可测试和最终可治疗的信息处理障碍来构建精神病学分类学。