Fisher Victoria L, Ortiz Liara S, Powers Albert R
Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States.
Front Psychiatry. 2022 Aug 3;13:906796. doi: 10.3389/fpsyt.2022.906796. eCollection 2022.
Psychotic episodes are debilitating disease states that can cause extreme distress and impair functioning. There are sex differences that drive the onset of these episodes. One difference is that, in addition to a risk period in adolescence and early adulthood, women approaching the menopause transition experience a second period of risk for new-onset psychosis. One leading hypothesis explaining this menopause-associated psychosis (MAP) is that estrogen decline in menopause removes a protective factor against processes that contribute to psychotic symptoms. However, the neural mechanisms connecting estrogen decline to these symptoms are still not well understood. Using the tools of computational psychiatry, links have been proposed between symptom presentation and potential algorithmic and biological correlates. These models connect changes in signaling with symptom formation by evaluating changes in information processing that are not easily observable (latent states). In this manuscript, we contextualize the observed effects of estrogen (decline) on neural pathways implicated in psychosis. We then propose how estrogen could drive changes in latent states giving rise to cognitive and psychotic symptoms associated with psychosis. Using computational frameworks to inform research in MAP may provide a systematic method for identifying patient-specific pathways driving symptoms and simultaneously refine models describing the pathogenesis of psychosis across all age groups.
精神病发作是使人衰弱的疾病状态,可导致极度痛苦并损害功能。这些发作的发生存在性别差异。其中一个差异是,除了在青春期和成年早期有一个风险期外,接近更年期过渡的女性会经历新发精神病的第二个风险期。解释这种与更年期相关的精神病(MAP)的一个主要假说是,更年期雌激素水平下降消除了对导致精神病症状的过程的保护因素。然而,将雌激素下降与这些症状联系起来的神经机制仍未得到很好的理解。利用计算精神病学的工具,人们提出了症状表现与潜在算法及生物学关联之间的联系。这些模型通过评估不易观察到的信息处理变化(潜在状态),将信号变化与症状形成联系起来。在本手稿中,我们将雌激素(下降)对与精神病相关的神经通路的观察效应置于背景中。然后,我们提出雌激素如何驱动潜在状态的变化,从而引发与精神病相关的认知和精神病症状。利用计算框架为MAP研究提供信息,可能会提供一种系统的方法来识别驱动症状的患者特异性通路,同时完善描述所有年龄组精神病发病机制的模型。