Suppr超能文献

共同应对:口腔念珠菌-细菌生物膜与治疗策略。

In it together: Candida-bacterial oral biofilms and therapeutic strategies.

机构信息

Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Environ Microbiol Rep. 2022 Apr;14(2):183-196. doi: 10.1111/1758-2229.13053. Epub 2022 Feb 26.

Abstract

Under natural environmental settings or in the human body, the majority of microorganisms exist in complex polymicrobial biofilms adhered to abiotic and biotic surfaces. These microorganisms exhibit symbiotic, mutualistic, synergistic, or antagonistic relationships with other species during biofilm colonization and development. These polymicrobial interactions are heterogeneous, complex and hard to control, thereby often yielding worse outcomes than monospecies infections. Concerning fungi, Candida spp., in particular, Candida albicans is often detected with various bacterial species in oral biofilms. These Candida-bacterial interactions may induce the transition of C. albicans from commensal to pathobiont or dysbiotic organism. Consequently, Candida-bacterial interactions are largely associated with various oral diseases, including dental caries, denture stomatitis, periodontitis, peri-implantitis, and oral cancer. Given the severity of oral diseases caused by cross-kingdom consortia that develop hard-to-remove and highly drug-resistant biofilms, fundamental research is warranted to strategically develop cost-effective and safe therapies to prevent and treat cross-kingdom interactions and subsequent biofilm development. While studies have shed some light, targeting fungal-involved polymicrobial biofilms has been limited. This mini-review outlines the key features of Candida-bacterial interactions and their impact on various oral diseases. In addition, current knowledge on therapeutic strategies to target Candida-bacterial polymicrobial biofilms is discussed.

摘要

在自然环境或人体中,大多数微生物存在于附着在非生物和生物表面的复杂多微生物生物膜中。这些微生物在生物膜定植和发展过程中与其他物种表现出共生、互利共生、协同或拮抗关系。这些多微生物相互作用是异质的、复杂的且难以控制的,因此通常会导致比单物种感染更差的结果。就真菌而言,尤其是念珠菌属,特别是白色念珠菌,通常与口腔生物膜中的各种细菌一起被检测到。这些念珠菌-细菌相互作用可能会诱导白色念珠菌从共生体转变为条件致病菌或失调体。因此,念珠菌-细菌相互作用与各种口腔疾病密切相关,包括龋齿、义齿性口炎、牙周炎、种植体周围炎和口腔癌。鉴于由难以去除且高度耐药的生物膜引起的跨界共生体引起的口腔疾病的严重性,有必要进行基础研究,以战略性地开发具有成本效益和安全性的治疗方法,以预防和治疗跨界相互作用和随后的生物膜发展。虽然研究已经揭示了一些,但靶向真菌参与的多微生物生物膜的研究有限。本综述概述了念珠菌-细菌相互作用的关键特征及其对各种口腔疾病的影响。此外,还讨论了针对念珠菌-细菌多微生物生物膜的治疗策略的现有知识。

相似文献

1
In it together: Candida-bacterial oral biofilms and therapeutic strategies.
Environ Microbiol Rep. 2022 Apr;14(2):183-196. doi: 10.1111/1758-2229.13053. Epub 2022 Feb 26.
3
Candida-Bacterial Biofilms and Host-Microbe Interactions in Oral Diseases.
Adv Exp Med Biol. 2019;1197:119-141. doi: 10.1007/978-3-030-28524-1_10.
5
Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.
J Dent Res. 2017 Sep;96(10):1129-1135. doi: 10.1177/0022034517714414. Epub 2017 Jun 12.
7
8
Rhamnus prinoides (gesho) stem extract prevents co-culture biofilm formation by Streptococcus mutans and Candida albicans.
Lett Appl Microbiol. 2020 Sep;71(3):294-302. doi: 10.1111/lam.13307. Epub 2020 Jun 18.

引用本文的文献

1
Development of a novel family of antifungal agents based on a quinone methide oxime framework.
Sci Rep. 2025 Apr 18;15(1):13458. doi: 10.1038/s41598-025-98609-5.
3
Novel Approaches for Treatment of Intraoral Microbial Infections.
J Dent Res. 2025 Jun;104(6):584-593. doi: 10.1177/00220345251317494. Epub 2025 Mar 12.
4
Nanoparticles in the battle against Candida auris biofilms: current advances and future prospects.
Drug Deliv Transl Res. 2025 May;15(5):1496-1512. doi: 10.1007/s13346-024-01749-w. Epub 2024 Nov 26.
5
Corynebacterial membrane vesicles disrupt cariogenic interkingdom assemblages.
Appl Environ Microbiol. 2024 Nov 20;90(11):e0088524. doi: 10.1128/aem.00885-24. Epub 2024 Oct 31.
6
The Impact of Oral Microbiome Dysbiosis on the Aetiology, Pathogenesis, and Development of Oral Cancer.
Cancers (Basel). 2024 Aug 28;16(17):2997. doi: 10.3390/cancers16172997.
7
Photobiomodulation of Gingival Cells Challenged with Viable Oral Microbes.
J Dent Res. 2024 Jul;103(7):745-754. doi: 10.1177/00220345241246529. Epub 2024 May 3.
9
Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts.
Appl Microbiol Biotechnol. 2023 Jul;107(14):4409-4427. doi: 10.1007/s00253-023-12589-y. Epub 2023 May 26.
10
Diarylureas: New Promising Small Molecules against for the Treatment of Dental Caries.
Antibiotics (Basel). 2023 Jan 7;12(1):112. doi: 10.3390/antibiotics12010112.

本文引用的文献

3
Bimodal Nanocomposite Platform with Antibiofilm and Self-Powering Functionalities for Biomedical Applications.
ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40379-40391. doi: 10.1021/acsami.1c11791. Epub 2021 Aug 18.
4
Occurrence of in Periodontitis.
Int J Dent. 2021 May 28;2021:5589664. doi: 10.1155/2021/5589664. eCollection 2021.
5
7
Mixed biofilms of pathogenic -bacteria: regulation mechanisms and treatment strategies.
Crit Rev Microbiol. 2021 Nov;47(6):699-727. doi: 10.1080/1040841X.2021.1921696. Epub 2021 May 18.
10
Effects of extracellular DNA on dual-species biofilm formed by Streptococcus mutans and Candida albicans.
Microb Pathog. 2021 May;154:104838. doi: 10.1016/j.micpath.2021.104838. Epub 2021 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验