Suppr超能文献

基于U-net和残差块的提高直肠癌诊断准确性的计算机断层扫描图像分割算法

[A computed tomography image segmentation algorithm for improving the diagnostic accuracy of rectal cancer based on U-net and residual block].

作者信息

Wang Hao, Ji Bangning, He Gang, Yu Wenxin

机构信息

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):166-174. doi: 10.7507/1001-5515.201910027.

Abstract

As an important basis for lesion determination and diagnosis, medical image segmentation has become one of the most important and hot research fields in the biomedical field, among which medical image segmentation algorithms based on full convolutional neural network and U-Net neural network have attracted more and more attention by researchers. At present, there are few reports on the application of medical image segmentation algorithms in the diagnosis of rectal cancer, and the accuracy of the segmentation results of rectal cancer is not high. In this paper, a convolutional network model of encoding and decoding combined with image clipping and pre-processing is proposed. On the basis of U-Net, this model replaced the traditional convolution block with the residual block, which effectively avoided the problem of gradient disappearance. In addition, the image enlargement method is also used to improve the generalization ability of the model. The test results on the data set provided by the "Teddy Cup" Data Mining Challenge showed that the residual block-based improved U-Net model proposed in this paper, combined with image clipping and preprocessing, could greatly improve the segmentation accuracy of rectal cancer, and the Dice coefficient obtained reached 0.97 on the verification set.

摘要

作为病变判定与诊断的重要依据,医学图像分割已成为生物医学领域最重要且热门的研究领域之一,其中基于全卷积神经网络和U-Net神经网络的医学图像分割算法受到了研究人员越来越多的关注。目前,关于医学图像分割算法在直肠癌诊断中的应用报道较少,且直肠癌分割结果的准确性不高。本文提出了一种结合图像裁剪与预处理的编解码卷积网络模型。该模型在U-Net的基础上,用残差块取代了传统卷积块,有效避免了梯度消失问题。此外,还采用图像放大方法提高模型的泛化能力。在“泰迪杯”数据挖掘挑战赛提供的数据集上的测试结果表明,本文提出的基于残差块的改进U-Net模型结合图像裁剪与预处理,能大幅提高直肠癌的分割精度,在验证集上获得的Dice系数达到了0.97。

相似文献

4
..
Int Ophthalmol. 2025 Jun 27;45(1):266. doi: 10.1007/s10792-025-03602-6.

本文引用的文献

1
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验