Suppr超能文献

基于U-net和残差块的提高直肠癌诊断准确性的计算机断层扫描图像分割算法

[A computed tomography image segmentation algorithm for improving the diagnostic accuracy of rectal cancer based on U-net and residual block].

作者信息

Wang Hao, Ji Bangning, He Gang, Yu Wenxin

机构信息

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):166-174. doi: 10.7507/1001-5515.201910027.

Abstract

As an important basis for lesion determination and diagnosis, medical image segmentation has become one of the most important and hot research fields in the biomedical field, among which medical image segmentation algorithms based on full convolutional neural network and U-Net neural network have attracted more and more attention by researchers. At present, there are few reports on the application of medical image segmentation algorithms in the diagnosis of rectal cancer, and the accuracy of the segmentation results of rectal cancer is not high. In this paper, a convolutional network model of encoding and decoding combined with image clipping and pre-processing is proposed. On the basis of U-Net, this model replaced the traditional convolution block with the residual block, which effectively avoided the problem of gradient disappearance. In addition, the image enlargement method is also used to improve the generalization ability of the model. The test results on the data set provided by the "Teddy Cup" Data Mining Challenge showed that the residual block-based improved U-Net model proposed in this paper, combined with image clipping and preprocessing, could greatly improve the segmentation accuracy of rectal cancer, and the Dice coefficient obtained reached 0.97 on the verification set.

摘要

作为病变判定与诊断的重要依据,医学图像分割已成为生物医学领域最重要且热门的研究领域之一,其中基于全卷积神经网络和U-Net神经网络的医学图像分割算法受到了研究人员越来越多的关注。目前,关于医学图像分割算法在直肠癌诊断中的应用报道较少,且直肠癌分割结果的准确性不高。本文提出了一种结合图像裁剪与预处理的编解码卷积网络模型。该模型在U-Net的基础上,用残差块取代了传统卷积块,有效避免了梯度消失问题。此外,还采用图像放大方法提高模型的泛化能力。在“泰迪杯”数据挖掘挑战赛提供的数据集上的测试结果表明,本文提出的基于残差块的改进U-Net模型结合图像裁剪与预处理,能大幅提高直肠癌的分割精度,在验证集上获得的Dice系数达到了0.97。

相似文献

1
[A computed tomography image segmentation algorithm for improving the diagnostic accuracy of rectal cancer based on U-net and residual block].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):166-174. doi: 10.7507/1001-5515.201910027.
4
.
Int Ophthalmol. 2025 Jun 27;45(1):266. doi: 10.1007/s10792-025-03602-6.
5
Implementation of biomedical segmentation for brain tumor utilizing an adapted U-net model.
Comput Biol Med. 2025 Aug;194:110531. doi: 10.1016/j.compbiomed.2025.110531. Epub 2025 Jun 11.
6
Combination of 2D and 3D nnU-Net for ground glass opacity segmentation in CT images of Post-COVID-19 patients.
Comput Biol Med. 2025 Jun 20;195:110376. doi: 10.1016/j.compbiomed.2025.110376.
7
FCRB U-Net: A novel fully connected residual block U-Net for fetal cerebellum ultrasound image segmentation.
Comput Biol Med. 2022 Sep;148:105693. doi: 10.1016/j.compbiomed.2022.105693. Epub 2022 Jun 2.
8
Attention residual network for medical ultrasound image segmentation.
Sci Rep. 2025 Jul 1;15(1):22155. doi: 10.1038/s41598-025-04086-1.
10
Unsupervised retinal image registration based on D-STUNet and progressive keypoint screening strategy.
Biomed Phys Eng Express. 2025 Jul 9;11(4). doi: 10.1088/2057-1976/ade9c6.

本文引用的文献

1
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
2
[Research progress of computer-aided diagnosis in cancer based on deep learning and medical imaging].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Apr 25;34(2):314-319. doi: 10.7507/1001-5515.201609047.
3
Estimates of cancer incidence and mortality in China, 2013.
Chin J Cancer. 2017 Aug 17;36(1):66. doi: 10.1186/s40880-017-0234-3.
8
Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability.
Eur Radiol. 2011 Dec;21(12):2567-74. doi: 10.1007/s00330-011-2220-5. Epub 2011 Aug 7.
9
Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection.
Radiology. 2004 Sep;232(3):815-22. doi: 10.1148/radiol.2323031065. Epub 2004 Jul 23.
10
Staging rectal cancer by MR and CT.
AJR Am J Roentgenol. 1986 Jun;146(6):1155-60. doi: 10.2214/ajr.146.6.1155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验