Suppr超能文献

动态蛋白质组中高能态结构的确定。

Structure determination of high-energy states in a dynamic protein ensemble.

机构信息

Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA.

Department of Chemistry, University of Basel, Basel, Switzerland.

出版信息

Nature. 2022 Mar;603(7901):528-535. doi: 10.1038/s41586-022-04468-9. Epub 2022 Mar 2.

Abstract

Macromolecular function frequently requires that proteins change conformation into high-energy states. However, methods for solving the structures of these functionally essential, lowly populated states are lacking. Here we develop a method for high-resolution structure determination of minorly populated states by coupling NMR spectroscopy-derived pseudocontact shifts (PCSs) with Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (PCS-CPMG). Our approach additionally defines the corresponding kinetics and thermodynamics of high-energy excursions, thereby characterizing the entire free-energy landscape. Using a large set of simulated data for adenylate kinase (Adk), calmodulin and Src kinase, we find that high-energy PCSs accurately determine high-energy structures (with a root mean squared deviation of less than 3.5 angström). Applying our methodology to Adk during catalysis, we find that the high-energy excursion involves surprisingly small openings of the AMP and ATP lids. This previously unresolved high-energy structure solves a longstanding controversy about conformational interconversions that are rate-limiting for catalysis. Primed for either substrate binding or product release, the high-energy structure of Adk suggests a two-step mechanism combining conformational selection to this state, followed by an induced-fit step into a fully closed state for catalysis of the phosphoryl-transfer reaction. Unlike other methods for resolving high-energy states, such as cryo-electron microscopy and X-ray crystallography, our solution PCS-CPMG approach excels in cases involving domain rearrangements of smaller systems (less than 60 kDa) and populations as low as 0.5%, and enables the simultaneous determination of protein structure, kinetics and thermodynamics while proteins perform their function.

摘要

蛋白质的大分子功能通常需要其构象发生改变,进入高能状态。然而,目前还缺乏用于解析这些在功能上至关重要、低丰度的高能状态结构的方法。在这里,我们开发了一种通过将基于 NMR 光谱的赝接触位移(PCSs)与 Carr-Purcell-Meiboom-Gill(CPMG)弛豫分散(PCS-CPMG)相结合的方法,用于解析低丰度状态的高分辨率结构。我们的方法还可以确定高能跃迁的相应动力学和热力学,从而全面描述自由能景观。通过对一组模拟的腺苷酸激酶(Adk)、钙调蛋白和Src 激酶的数据进行分析,我们发现高能 PCSs 可以准确地确定高能结构(均方根偏差小于 3.5 埃)。将我们的方法应用于 Adk 的催化过程中,我们发现高能跃迁涉及 AMP 和 ATP 盖子的惊人小开度。这个之前尚未解决的高能结构解决了一个长期存在的争议,即构象转换是催化限速步骤。处于与底物结合或产物释放相适应的高能状态,Adk 的高能结构表明该酶的两步机制,即首先通过构象选择进入该状态,然后通过诱导契合进入完全关闭状态,以进行磷酸转移反应的催化。与其他用于解析高能状态的方法(如冷冻电子显微镜和 X 射线晶体学)不同,我们的溶液 PCS-CPMG 方法在涉及较小系统(小于 60 kDa)的结构域重排和丰度低至 0.5%的情况下表现出色,并且能够在蛋白质执行其功能的同时,同时确定蛋白质的结构、动力学和热力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f05/9126080/a07dbba7840e/nihms-1802544-f0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验