Suppr超能文献

超加工食品摄入与饮食碳足迹和水足迹:巴西的一项全国性研究。

Ultra-processed food intake and diet carbon and water footprints: a national study in Brazil.

机构信息

Universidade de São Paulo. Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde. São Paulo, SP, Brasil.

Deakin University. Institute for Physical Activity and Nutrition. Melbourne, Austrália.

出版信息

Rev Saude Publica. 2022 Feb 28;56:6. doi: 10.11606/s1518-8787.2022056004551. eCollection 2022.

Abstract

OBJECTIVE

To study the association between ultra-processed food consumption and carbon and water footprints of the Brazilian diet.

METHODS

Cross-sectional analysis on data collected in 2008-2009 on a probabilistic sample of the Brazilian population aged ≥ 10 years (n = 32,886). Individual food intake was assessed using two 24-hour food records, on non-consecutive days. The environmental impact of individual diets was calculated by multiplying the amount of each food by coefficients that quantify the atmospheric emissions of greenhouse gases in grams of carbon dioxide equivalent (carbon footprint) and freshwater use in liters (water footprint), both per gram or milliliter of food. The two coefficients consider the food life cycle 'from farm to fork.' Crude and adjusted linear regression models and tests for linear trends assessed the association between the ultra-processed food contribution to total energy intake (quintiles) and the diet carbon and water footprints. Potential confounders included age, sex, education, income, and region. Total energy intake was assessed as a potential mediation variable.

RESULTS

In the crude models, the dietary contribution of ultra-processed foods was linearly associated with the carbon and water footprints of the Brazilian diet. After adjustment for potential confounders, the association remained significant only regarding the diet water footprint, which increased by 10.1% between the lowest and highest quintile of the contribution of ultra-processed foods. Additional adjustment for total energy intake eliminated this association indicating that the dietary contribution of ultra-processed foods increases the diet water footprint by increasing energy intake.

CONCLUSIONS

The negative impact of ultra-processed foods on the diet water footprint, shown for the first time in this study, adds to the negative impacts of these foods, already demonstrated regarding dietary nutrient profiles and the risk for several chronic non-communicable diseases. This reinforces the recommendation to avoid ultra-processed foods made in the official Brazilian Dietary Guidelines and increasingly in dietary guidelines of other countries.

摘要

目的

研究超加工食品消费与巴西饮食的碳足迹和水足迹之间的关联。

方法

对 2008-2009 年巴西≥10 岁人群概率抽样(n=32886)进行的横断面分析。使用两天间非连续的 24 小时食物记录来评估个体食物摄入量。通过将每种食物的数量乘以量化温室气体大气排放的系数来计算个体饮食的环境影响,以克二氧化碳当量表示(碳足迹)和每克或毫升食物的淡水用量(水足迹)。这两个系数考虑了食品生命周期“从农场到叉子”。使用未经调整和调整后的线性回归模型以及线性趋势检验来评估超加工食品对总能量摄入(五分位数)的贡献与饮食碳足迹和水足迹之间的关联。潜在混杂因素包括年龄、性别、教育、收入和地区。总能量摄入被评估为潜在的中介变量。

结果

在未调整模型中,超加工食品的饮食贡献与巴西饮食的碳足迹和水足迹呈线性相关。在调整潜在混杂因素后,这种关联仅在饮食水足迹方面仍然显著,超加工食品贡献最低五分位组与最高五分位组之间的饮食水足迹增加了 10.1%。进一步调整总能量摄入消除了这种关联,表明超加工食品的饮食贡献通过增加能量摄入来增加饮食水足迹。

结论

本研究首次表明,超加工食品对饮食水足迹的负面影响增加了这些食品的负面影响,这些负面影响已经在饮食营养状况和多种慢性非传染性疾病风险方面得到了证明。这进一步加强了巴西膳食指南以及越来越多的其他国家膳食指南中对避免超加工食品的建议。

相似文献

5
[Ultra-processed foods and dietary fiber consumption in Brazil].[巴西的超加工食品与膳食纤维消费]
Cien Saude Colet. 2021 Sep;26(9):4153-4161. doi: 10.1590/1413-81232021269.15462020. Epub 2020 Jul 2.

引用本文的文献

9
Food and Nutrition Surveillance System markers predict diet quality.食物和营养监测系统标志物可预测饮食质量。
Rev Saude Publica. 2023 Nov 10;57:82. doi: 10.11606/s1518-8787.2023057005087. eCollection 2023.

本文引用的文献

2
Carbon footprint of the Brazilian diet.巴西饮食的碳足迹。
Rev Saude Publica. 2021 Dec 8;55:90. doi: 10.11606/s1518-8787.2021055003614. eCollection 2021.
7
The neglected environmental impacts of ultra-processed foods.超加工食品被忽视的环境影响。
Lancet Planet Health. 2020 Oct;4(10):e437-e438. doi: 10.1016/S2542-5196(20)30177-7.
10
Ultra-processed foods: what they are and how to identify them.超加工食品:它们是什么以及如何识别它们。
Public Health Nutr. 2019 Apr;22(5):936-941. doi: 10.1017/S1368980018003762. Epub 2019 Feb 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验