ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13692-13702. doi: 10.1021/acsami.1c22690. Epub 2022 Mar 8.
Plant viral nanoparticles (plant VNPs) are promising biogenetic nanosystems for the delivery of therapeutic, immunotherapeutic, and diagnostic agents. The production of plant VNPs is simple and highly scalable through molecular farming in plants. Some of the important advances in VNP nanotechnology include genetic modification, disassembly/reassembly, and bioconjugation. Although effective, these methods often involve complex and time-consuming multi-step protocols. Here, we report a simple and versatile supramolecular coating strategy for designing functional plant VNPs metal-phenolic networks (MPNs). Specifically, this method gives plant viruses [, tobacco mosaic virus (TMV), cowpea mosaic virus, and potato virus X] additional functionalities including photothermal transduction, photoacoustic imaging, and fluorescent labeling different components in MPN coating [, complexes of tannic acid (TA), metal ions (, Fe, Zr, or Gd), or fluorescent dyes (, rhodamine 6G and thiazole orange)]. For example, using TMV as a viral substrate by choosing Zr-TA and rhodamine 6G, fluorescence is observed peaking at 555 nm; by choosing Fe-TA coating, the photothermal conversion efficiency was increased from 0.8 to 33.2%, and the photoacoustic performance was significantly improved with a limit of detection of 17.7 μg mL. We further confirmed that TMV@Fe-TA nanohybrids show good cytocompatibility and excellent cell-killing performance in photothermal therapy with 808 nm irradiation. These findings not only prove the practical benefits of this supramolecular coating for designing multifunctional and biocompatible plant VNPs but also bode well for using such materials in a variety of plant virus-based theranostic applications.
植物病毒纳米颗粒(plant VNPs)是一种很有前途的生物遗传纳米系统,可用于输送治疗、免疫治疗和诊断制剂。通过在植物中进行分子农业生产,植物 VNPs 的生产既简单又具有高度可扩展性。VNP 纳米技术的一些重要进展包括基因修饰、拆卸/组装和生物缀合。虽然有效,但这些方法通常涉及复杂且耗时的多步方案。在这里,我们报告了一种用于设计功能性植物 VNPs 的简单而通用的超分子涂层策略-金属-多酚网络(MPNs)。具体来说,该方法使植物病毒[烟草花叶病毒(TMV)、豇豆花叶病毒和马铃薯 X 病毒]具有额外的功能,包括光热转换、光声成像和荧光标记[MPN 涂层中的不同成分,如单宁酸(TA)、金属离子(Fe、Zr 或 Gd)或荧光染料(罗丹明 6G 和噻唑橙)]。例如,选择 Zr-TA 和罗丹明 6G 作为 TMV 的病毒基质,观察到荧光在 555nm 处达到峰值;选择 Fe-TA 涂层,光热转换效率从 0.8 提高到 33.2%,光声性能显著提高,检测限为 17.7μgmL。我们进一步证实,TMV@Fe-TA 纳米杂化物在 808nm 照射下的光热治疗中具有良好的细胞相容性和优异的细胞杀伤性能。这些发现不仅证明了这种超分子涂层在设计多功能和生物相容的植物 VNPs 方面的实际意义,而且为在各种基于植物病毒的治疗应用中使用此类材料提供了良好的前景。