Suppr超能文献

定制具有各向异性椭圆多孔图案的导电反转蛋白石膜以引导神经细胞取向。

Tailoring conductive inverse opal films with anisotropic elliptical porous patterns for nerve cell orientation.

机构信息

Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

出版信息

J Nanobiotechnology. 2022 Mar 9;20(1):117. doi: 10.1186/s12951-022-01340-w.

Abstract

BACKGROUND

The nervous system is critical to the operation of various organs and systems, while novel methods with designable neural induction remain to exploit.

RESULTS

Here, we present a conductive inverse opal film with anisotropic elliptical porous patterns for nerve orientation induction. The films are fabricated based on polystyrene (PS) inverse opal scaffolds with periodical elliptical porous structure and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) mixed polyacrylamide (PAAm) polymers fillers. It is demonstrated that the anisotropic elliptical surface topography allows the nerve cells to be induced into orientation connected with the stretching direction. Because of the anisotropic features of the film which can be stretched into different directions, nerve cells can be induced to grow in one or two directions, forming a neural network and promoting the connection of nerve cells. It is worth mentioning that the PEDOT:PSS-doped PAAm hydrogels endow the film with conductive properties, which makes the composite films be a suitable candidate for neurites growth and differentiation.

CONCLUSIONS

All these features of the conductive and anisotropic inverse opal films imply their great prospects in biomedical applications.

摘要

背景

神经系统对各种器官和系统的运作至关重要,而具有可设计神经诱导的新颖方法仍然有待开发。

结果

在这里,我们提出了一种具有各向异性椭圆多孔图案的导电反蛋白石膜,用于诱导神经取向。该薄膜基于具有周期性椭圆多孔结构的聚苯乙烯(PS)反蛋白石支架和聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)混合聚(丙烯酰胺)(PAAm)聚合物填料来制造。结果表明,各向异性的椭圆表面形貌可使神经细胞被诱导为与拉伸方向相连接的取向。由于薄膜具有可拉伸成不同方向的各向异性特征,因此可以诱导神经细胞向一个或两个方向生长,形成神经网络并促进神经细胞的连接。值得一提的是,掺杂 PEDOT:PSS 的 PAAm 水凝胶赋予了薄膜导电性能,这使得复合薄膜成为神经突生长和分化的合适候选材料。

结论

这些导电各向异性反蛋白石膜的所有特性都表明它们在生物医学应用中有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5918/8905848/f11d81ccc648/12951_2022_1340_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验