Suppr超能文献

基于卷积神经网络的胸部 CT 图像中周围型肺癌与局灶性肺炎的识别。

Recognition of Peripheral Lung Cancer and Focal Pneumonia on Chest Computed Tomography Images Based on Convolutional Neural Network.

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Key laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

出版信息

Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221085375. doi: 10.1177/15330338221085375.

Abstract

Chest computed tomography (CT) is important for the early screening of lung diseases and clinical diagnosis, particularly during the COVID-19 pandemic. We propose a method for classifying peripheral lung cancer and focal pneumonia on chest CT images and undertake 5 window settings to study the effect on the artificial intelligence processing results. A retrospective collection of CT images from 357 patients with peripheral lung cancer having solitary solid nodule or focal pneumonia with a solitary consolidation was applied. We segmented and aligned the lung parenchyma based on some morphological methods and cropped this region of the lung parenchyma with the minimum 3D bounding box. Using these 3D cropped volumes of all cases, we designed a 3D neural network to classify them into 2 categories. We also compared the classification results of the 3 physicians with different experience levels on the same dataset. We conducted experiments using 5 window settings. After cropping and alignment based on an automatic preprocessing procedure, our neural network achieved an average classification accuracy of 91.596% under a 5-fold cross-validation in the full window, in which the area under the curve (AUC) was 0.946. The classification accuracy and AUC value were 90.48% and 0.957 for the junior physician, 94.96% and 0.989 for the intermediate physician, and 96.92% and 0.980 for the senior physician, respectively. After removing the error prediction, the accuracy improved significantly, reaching 98.79% in the self-defined window2. Using the proposed neural network, in separating peripheral lung cancer and focal pneumonia in chest CT data, we achieved an accuracy competitive to that of a junior physician. Through a data ablation study, the proposed 3D CNN can achieve a slightly higher accuracy compared with senior physicians in the same subset. The self-defined window2 was the best for data training and evaluation.

摘要

胸部计算机断层扫描(CT)对于肺部疾病的早期筛查和临床诊断非常重要,尤其是在 COVID-19 大流行期间。我们提出了一种用于对胸部 CT 图像上的周围型肺癌和局灶性肺炎进行分类的方法,并进行了 5 种窗口设置研究,以研究其对人工智能处理结果的影响。我们回顾性地收集了 357 例周围型肺癌患者的 CT 图像,这些患者均为孤立性实性结节或局灶性肺炎伴单一实变。我们基于一些形态学方法对肺实质进行分割和配准,并使用最小的 3D 边界框裁剪该肺实质区域。使用所有病例的这些 3D 裁剪体积,我们设计了一个 3D 神经网络将其分为 2 类。我们还比较了不同经验水平的 3 位医生在同一数据集上的分类结果。我们进行了 5 种窗口设置的实验。在基于自动预处理过程进行裁剪和配准后,我们的神经网络在全窗口 5 倍交叉验证下的平均分类准确率为 91.596%,曲线下面积(AUC)为 0.946。初级医师的分类准确率和 AUC 值分别为 90.48%和 0.957,中级医师为 94.96%和 0.989,高级医师为 96.92%和 0.980。去除错误预测后,准确率显著提高,在自定义窗口 2 中达到 98.79%。使用提出的神经网络,我们在胸部 CT 数据中区分周围型肺癌和局灶性肺炎的准确率与初级医师相当。通过数据消融研究,与相同子集的高级医师相比,所提出的 3D CNN 可以获得略高的准确率。自定义窗口 2 是数据训练和评估的最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f999/8935416/87dff9528a7c/10.1177_15330338221085375-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验