Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
School of Biotechnology, Jiangnan University, Wuxi 214122, China.
ACS Synth Biol. 2022 Apr 15;11(4):1497-1509. doi: 10.1021/acssynbio.1c00582. Epub 2022 Mar 16.
Gene editing technology plays an extremely significant role in synthetic biology and metabolic engineering. Traditional genetic manipulation methods, such as homologous recombination, however, are inefficient, time-consuming, and barely feasible when disrupting multiple genes simultaneously. , a nonconventional yeast that overproduces sophorolipids, lacks convenient genetic tools for engineering strains. Here, we developed an efficient CRISPR-Cas9 genome editing technology by combining molecular element mining and expression system optimization for . This CRISPR-Cas9 system improved the efficiency of gene-integration/target gene-introducing disruption by homology-directed repair and realized the multi-gene simultaneous disruptions. Based on this CRISPR-Cas9 system, we also further constructed an engineered strain via the assembly of multiple DNA fragments (10 kb) that can produce acid-type sophorolipids. These results showed that the CRISPR-Cas9 system may be an efficient and convenient strategy to perform genetic manipulation in .
基因编辑技术在合成生物学和代谢工程中起着极其重要的作用。然而,传统的遗传操作方法,如同源重组,效率低下,耗时且同时破坏多个基因几乎不可行。, 一种过量产生槐糖脂的非传统酵母,缺乏用于工程菌株的方便遗传工具。在这里,我们通过分子元件挖掘和表达系统优化,为 开发了一种高效的 CRISPR-Cas9 基因组编辑技术。该 CRISPR-Cas9 系统通过同源定向修复提高了基因整合/靶基因引入破坏的效率,并实现了多基因的同时破坏。基于这个 CRISPR-Cas9 系统,我们还通过多个 DNA 片段(10kb)的 组装进一步构建了一个能够产生酸性槐糖脂的工程菌株。这些结果表明,CRISPR-Cas9 系统可能是在 中进行遗传操作的有效且方便的策略。