Suppr超能文献

利用机器学习基于心电图预测新型冠状病毒肺炎患者的死亡率

Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning.

作者信息

van de Leur R R, Bleijendaal H, Taha K, Mast T, Gho J M I H, Linschoten M, van Rees B, Henkens M T H M, Heymans S, Sturkenboom N, Tio R A, Offerhaus J A, Bor W L, Maarse M, Haerkens-Arends H E, Kolk M Z H, van der Lingen A C J, Selder J J, Wierda E E, van Bergen P F M M, Winter M M, Zwinderman A H, Doevendans P A, van der Harst P, Pinto Y M, Asselbergs F W, van Es R, Tjong F V Y

机构信息

Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.

Netherlands Heart Institute, Utrecht, The Netherlands.

出版信息

Neth Heart J. 2022 Jun;30(6):312-318. doi: 10.1007/s12471-022-01670-2. Epub 2022 Mar 17.

Abstract

BACKGROUND AND PURPOSE

The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients.

METHODS

Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation.

RESULTS

Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65-0.79), 0.76 (95% CI 0.68-0.82) and 0.77 (95% CI 0.70-0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block.

CONCLUSION

This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features.

摘要

背景与目的

在对2019冠状病毒病(COVID-19)患者的检查过程中,经常会进行心电图(ECG)检查。到目前为止,尚无研究评估基于心电图的机器学习模型在预测COVID-19患者院内死亡率方面是否具有附加价值。

方法

利用CAPACITY-COVID注册研究的数据,我们研究了荷兰七家医院收治的882例COVID-19患者。对入院72小时内记录的原始格式12导联心电图进行研究。利用五家医院的数据(n = 634),开发了三个模型:(a)使用年龄和性别的逻辑回归基线模型;(b)使用年龄、性别和人工标注心电图特征的最小绝对收缩和选择算子(LASSO)模型;(c)使用年龄、性别和原始心电图波形的预训练深度神经网络(DNN)。来自两家医院的数据(n = 248)用于外部验证。

结果

模型a、b和c的性能相当,受试者工作特征曲线下面积分别为0.73(95%置信区间[CI] 0.65 - 0.79)、0.76(95% CI 0.68 - 0.82)和0.77(95% CI 0.70 - 0.83)。LASSO模型中的死亡预测因素为年龄、低QRS电压、ST段压低、房性早搏、性别、心室率增加和右束支传导阻滞。

结论

本研究表明,基于心电图的预测模型可能有助于对COVID-19确诊患者进行初始风险分层,并且几种心电图异常与COVID-19患者的院内全因死亡率相关。此外,这项原理验证研究表明,与耗时的心电图特征人工标注相比,使用预训练的DNN进行心电图分析并不逊色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03db/9123141/aab022744bf6/12471_2022_1670_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验