Suppr超能文献

深度神经网络揭示了与死亡风险相关的新的性别特异性心电图特征。

Deep neural networks reveal novel sex-specific electrocardiographic features relevant for mortality risk.

作者信息

Siegersma Klaske R, van de Leur Rutger R, Onland-Moret N Charlotte, Leon David A, Diez-Benavente Ernest, Rozendaal Liesbeth, Bots Michiel L, Coronel Ruben, Appelman Yolande, Hofstra Leonard, van der Harst Pim, Doevendans Pieter A, Hassink Rutger J, den Ruijter Hester M, van Es René

机构信息

Department of Cardiology, Amsterdam University Medical Centres, VU University Amsterdam, Amsterdam, The Netherlands.

Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

出版信息

Eur Heart J Digit Health. 2022 Mar 21;3(2):245-254. doi: 10.1093/ehjdh/ztac010. eCollection 2022 Jun.

Abstract

AIMS

Incorporation of sex in study design can lead to discoveries in medical research. Deep neural networks (DNNs) accurately predict sex based on the electrocardiogram (ECG) and we hypothesized that misclassification of sex is an important predictor for mortality. Therefore, we first developed and validated a DNN that classified sex based on the ECG and investigated the outcome. Second, we studied ECG drivers of DNN-classified sex and mortality.

METHODS AND RESULTS

A DNN was trained to classify sex based on 131 673 normal ECGs. The algorithm was validated on internal (68 500 ECGs) and external data sets (3303 and 4457 ECGs). The survival of sex (mis)classified groups was investigated using time-to-event analysis and sex-stratified mediation analysis of ECG features. The DNN successfully distinguished female from male ECGs {internal validation: area under the curve (AUC) 0.96 [95% confidence interval (CI): 0.96, 0.97]; external validations: AUC 0.89 (95% CI: 0.88, 0.90), 0.94 (95% CI: 0.93, 0.94)}. Sex-misclassified individuals (11%) had a 1.4 times higher mortality risk compared with correctly classified peers. The ventricular rate was the strongest mediating ECG variable (41%, 95% CI: 31%, 56%) in males, while the maximum amplitude of the ST segment was strongest in females (18%, 95% CI: 11%, 39%). Short QRS duration was associated with higher mortality risk.

CONCLUSION

Deep neural networks accurately classify sex based on ECGs. While the proportion of ECG-based sex misclassifications is low, it is an interesting biomarker. Investigation of the causal pathway between misclassification and mortality uncovered new ECG features that might be associated with mortality. Increased emphasis on sex as a biological variable in artificial intelligence is warranted.

摘要

目的

在研究设计中纳入性别因素可推动医学研究取得新发现。深度神经网络(DNN)能够根据心电图(ECG)准确预测性别,我们推测性别误分类是死亡率的一个重要预测因素。因此,我们首先开发并验证了一种基于ECG对性别进行分类的DNN,并对结果进行了研究。其次,我们研究了DNN分类的性别和死亡率的ECG驱动因素。

方法和结果

使用131673份正常ECG对DNN进行训练以对性别进行分类。该算法在内部数据集(68500份ECG)和外部数据集(3303份和4457份ECG)上进行了验证。使用事件发生时间分析和ECG特征的性别分层中介分析来研究性别(误)分类组的生存率。DNN成功区分了女性和男性的ECG{内部验证:曲线下面积(AUC)为0.96[95%置信区间(CI):0.96,0.97];外部验证:AUC分别为0.89(95%CI:0.88,0.90)、0.94(95%CI:0.93,0.94)}。性别误分类的个体(11%)与正确分类的同龄人相比,死亡风险高1.4倍。心室率是男性中最强的中介ECG变量(41%,95%CI:31%,56%),而ST段最大振幅在女性中最强(18%,95%CI:11%,39%)。短QRS时限与较高的死亡风险相关。

结论

深度神经网络能够根据ECG准确分类性别。虽然基于ECG的性别误分类比例较低,但它是一个有趣的生物标志物。对误分类和死亡率之间因果途径的研究发现了可能与死亡率相关的新ECG特征。有必要在人工智能中更多地强调性别作为一个生物学变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d37/9707888/ca495defe197/ztac010ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验