Chemistry and Biochemistry, Brigham Young University, Ezra Taft Benson Building, Campus Drive, Provo, 84601, UT, USA.
Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602, USA.
Biomaterials. 2022 Apr;283:121464. doi: 10.1016/j.biomaterials.2022.121464. Epub 2022 Mar 16.
Micropatterned suspension culture creates consistently sized and shaped cell aggregates but has not produced organotypic structures from stable cells, thus restricting its use in accurate disease modeling. Here, we show that organotypic structure is achieved in hybrid suspension culture via supplementation of soluble extracellular matrix (ECM). We created a viable lung organoid from epithelial, endothelial, and fibroblast human stable cell lines in suspension culture. We demonstrate the importance of soluble ECM in organotypic patterning with the emergence of lumen-like structures with airspace showing feasible gas exchange units, formation of branching, perfusable vasculature, and long-term 70-day maintenance of lumen structure. Our results show a dependent relationship between enhanced fibronectin fibril assembly and the incorporation of ECM in the organoid. We successfully applied this technology in modeling lung fibrosis via bleomycin induction and test a potential antifibrotic drug in vitro while maintaining fundamental cell-cell interactions in lung tissue. Our human fluorescent lung organoid (hFLO) model represents features of pulmonary fibrosis which were ameliorated by fasudil treatment. We also demonstrate a 3D culture method with potential of creating organoids from mature cells, thus opening avenues for disease modeling and regenerative medicine, enhancing understanding of lung cell biology in health and lung disease.
微图案悬浮培养可产生大小和形状一致的细胞聚集体,但不能从稳定细胞中产生器官型结构,从而限制了其在精确疾病建模中的应用。在这里,我们通过补充可溶细胞外基质 (ECM) 展示了混合悬浮培养中实现器官型结构的方法。我们从上皮细胞、内皮细胞和成纤维细胞的稳定细胞系在悬浮培养中创建了可行的肺类器官。我们通过出现具有气腔的腔样结构来证明可溶性 ECM 在器官型模式形成中的重要性,这些气腔显示出可行的气体交换单元、分支形成、可灌注的脉管系统以及腔结构的 70 天长期维持。我们的结果表明,增强纤维连接蛋白原纤维组装与 ECM 在类器官中的结合之间存在依赖性关系。我们通过博来霉素诱导成功地将这项技术应用于肺纤维化的建模中,并在维持肺组织中基本的细胞-细胞相互作用的同时,在体外测试了一种潜在的抗纤维化药物。我们的人荧光肺类器官 (hFLO) 模型代表了肺纤维化的特征,法舒地尔治疗改善了这些特征。我们还展示了一种具有从成熟细胞中创建类器官潜力的 3D 培养方法,从而为疾病建模和再生医学开辟了途径,增进了对健康和肺部疾病中肺细胞生物学的理解。