Veeken Tom, Daiber Benjamin, Agrawal Harshal, Aarts Mark, Alarcón-Lladó Esther, Garnett Erik C, Ehrler Bruno, van de Groep Jorik, Polman Albert
Center for Nanophotonics, NWO-Institute, AMOLF Science Park 104 1098 XG Amsterdam The Netherlands
Institute of Physics, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands.
Nanoscale Adv. 2022 Jan 7;4(4):1088-1097. doi: 10.1039/d1na00630d. eCollection 2022 Feb 15.
We present a soft-stamping method to selectively print a homogenous layer of CdSeTe/ZnS core-shell quantum dots (QDs) on top of an array of Si nanocylinders with Mie-type resonant modes. Using this new method, we gain accurate control of the quantum dot's angular emission through engineered coupling of the QDs to these resonant modes. Using numerical simulations we show that the emission into or away from the Si substrate can be precisely controlled by the QD position on the nanocylinder. QDs centered on a 400 nm diameter nanocylinder surface show 98% emission directionality into the Si substrate. Alternatively, for homogenous ensembles placed over the nanocylinder top-surface, the upward emission is enhanced 10-fold for 150 nm diameter cylinders. Experimental PL intensity measurements corroborate the simulated trends with cylinder diameter. PL lifetime measurements reflect well the variations of the local density of states at the QD position due to coupling to the resonant cylinders. These results demonstrate that the soft imprint technique provides a unique manner to directly integrate optical emitters with a wide range of nanophotonic geometries, with potential applications in LEDs, luminescent solar concentrators, and up- and down-conversion schemes for improved photovoltaics.
我们提出了一种软压印方法,用于在具有米氏型共振模式的硅纳米圆柱阵列顶部选择性地打印一层均匀的CdSeTe/ZnS核壳量子点(QDs)。使用这种新方法,我们通过将量子点与这些共振模式进行工程耦合,实现了对量子点角发射的精确控制。通过数值模拟,我们表明,量子点在纳米圆柱上的位置可以精确控制其向硅衬底内部或远离硅衬底的发射。位于直径400 nm纳米圆柱表面中心的量子点向硅衬底内部的发射方向性达到98%。另外,对于放置在纳米圆柱顶表面的均匀量子点集合,直径150 nm的圆柱向上发射增强了10倍。实验测得的光致发光(PL)强度与模拟的圆柱直径趋势相符。PL寿命测量很好地反映了由于与共振圆柱耦合,量子点位置处的局域态密度变化。这些结果表明,软压印技术提供了一种独特的方式,可将光发射器与广泛的纳米光子几何结构直接集成,在发光二极管(LED)、发光太阳能聚光器以及用于改进光伏的上转换和下转换方案中具有潜在应用。