Suppr超能文献

状态焦虑的多模态数据与机器学习动态跟踪

Dynamic Tracking of State Anxiety Multi-Modal Data and Machine Learning.

作者信息

Ding Yue, Liu Jingjing, Zhang Xiaochen, Yang Zhi

机构信息

Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Psychiatry. 2022 Mar 2;13:757961. doi: 10.3389/fpsyt.2022.757961. eCollection 2022.

Abstract

Anxiety induction is widely used in the investigations of the mechanism and treatment of state anxiety. State anxiety is accompanied by immediate psychological and physiological responses. However, the existing state anxiety measurement, such as the commonly used state anxiety subscale of the State-Trait Anxiety Inventory, mainly relies on questionnaires with low temporal resolution. This study aims to develop a tracking model of state anxiety with high temporal resolution. To capture the dynamic changes of state anxiety levels, we induced the participants' state anxiety through exposure to aversive pictures or the risk of electric shocks and simultaneously recorded multi-modal data, including dimensional emotion ratings, electrocardiogram, and galvanic skin response. Using the paired self-reported state anxiety levels and multi-modal measures, we trained and validated machine learning models to predict state anxiety based on psychological and physiological features extracted from the multi-modal data. The prediction model achieved a high correlation between the predicted and self-reported state anxiety levels. This quantitative model provides fine-grained and sensitive measures of state anxiety levels for future affective brain-computer interaction and anxiety modulation studies.

摘要

焦虑诱导广泛应用于状态焦虑的机制和治疗研究中。状态焦虑伴随着即时的心理和生理反应。然而,现有的状态焦虑测量方法,如常用的状态-特质焦虑量表中的状态焦虑分量表,主要依赖于时间分辨率较低的问卷。本研究旨在建立一个具有高时间分辨率的状态焦虑跟踪模型。为了捕捉状态焦虑水平的动态变化,我们通过让参与者暴露于厌恶图片或电击风险中来诱导他们的状态焦虑,并同时记录多模态数据,包括维度情绪评分、心电图和皮肤电反应。利用配对的自我报告状态焦虑水平和多模态测量数据,我们训练并验证了机器学习模型,以基于从多模态数据中提取的心理和生理特征来预测状态焦虑。预测模型在预测的和自我报告的状态焦虑水平之间实现了高度相关性。这个定量模型为未来的情感脑机交互和焦虑调节研究提供了状态焦虑水平的细粒度和敏感测量方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a75/8924121/ae3ae3b324dc/fpsyt-13-757961-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验