Schaff Florian, Pollock James A, Morgan Kaye S, Kitchen Marcus J
Monash University, School of Physics and Astronomy, Clayton, Victoria, Australia.
Monash University, The Ritchie Centre, Clayton, Victoria, Australia.
J Med Imaging (Bellingham). 2022 May;9(3):031506. doi: 10.1117/1.JMI.9.3.031506. Epub 2022 Mar 15.
Propagation-based x-ray imaging (PBI) is a phase-contrast technique that is employed in high-resolution imaging by introducing some distance between sample and detector. PBI causes characteristic intensity fringes that have to be processed with appropriate phase-retrieval algorithms, which has historically been a difficult task for objects composed of several different materials. Spectral x-ray imaging has been introduced to PBI to overcome this issue and to potentially utilize the spectral nature of the data for material-specific imaging. We aim to explore the potential of spectral PBI in three-dimensional computed tomography (CT) imaging in this work. We demonstrate phase-retrieval for experimental high-resolution spectral propagation-based CT data of a simple two-component sample, as well as a multimaterial capacitor test sample. Phase-retrieval was performed using an algorithm based on the Alvarez-Macovski model. Virtual monochromatic (VMI) and effective atomic number images were calculated after phase-retrieval. Phase-retrieval results from the spectral data set show a distinct gray-level for each material with no residual phase-contrast fringes. Several representations of the phase-retrieved data are provided. The VMI is used to display an attenuation-equivalent image at a chosen display energy of 80 keV, to provide good separation of materials with minimal noise. The effective atomic number image shows the material composition of the sample. Spectral photon-counting detector technology has already been shown to be compatible with spectral PBI, and there is a foreseeable need for robust phase-retrieval in high-resolution, spectral x-ray CT in the future. Our results demonstrate the feasibility of phase-retrieval for spectral PBI CT.
基于传播的X射线成像(PBI)是一种相衬技术,通过在样品和探测器之间引入一定距离来用于高分辨率成像。PBI会产生特征强度条纹,必须使用适当的相位恢复算法进行处理,对于由几种不同材料组成的物体来说,这在历史上一直是一项艰巨的任务。光谱X射线成像已被引入PBI,以克服这一问题,并有可能利用数据的光谱特性进行材料特异性成像。在这项工作中,我们旨在探索光谱PBI在三维计算机断层扫描(CT)成像中的潜力。我们展示了对一个简单的双组分样品以及一个多材料电容器测试样品的实验性高分辨率光谱传播式CT数据进行相位恢复的过程。使用基于阿尔瓦雷斯 - 马科夫斯基模型的算法进行相位恢复。在相位恢复后计算虚拟单色(VMI)图像和有效原子序数图像。光谱数据集的相位恢复结果显示,每种材料都有明显的灰度级,且没有残留的相衬条纹。提供了相位恢复数据的几种表示形式。VMI用于在选定的80 keV显示能量下显示等效衰减图像,以在最小噪声的情况下实现材料的良好分离。有效原子序数图像显示了样品的材料组成。光谱光子计数探测器技术已被证明与光谱PBI兼容,并且在未来的高分辨率光谱X射线CT中,对强大的相位恢复技术存在可预见的需求。我们的结果证明了光谱PBI CT相位恢复的可行性。