Suppr超能文献

通过对植物免疫受体整合结构域的分子工程改造实现新的识别特异性。

New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain.

机构信息

PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.

CBS, Univ. Montpellier, CNRS, INSERM, Montpellier, France.

出版信息

Nat Commun. 2022 Mar 21;13(1):1524. doi: 10.1038/s41467-022-29196-6.

Abstract

Plant nucleotide-binding and leucine-rich repeat domain proteins (NLRs) are immune sensors that recognize pathogen effectors. Here, we show that molecular engineering of the integrated decoy domain (ID) of an NLR can extend its recognition spectrum to a new effector. We relied for this on detailed knowledge on the recognition of the Magnaporthe oryzae effectors AVR-PikD, AVR-Pia, and AVR1-CO39 by, respectively, the rice NLRs Pikp-1 and RGA5. Both receptors detect their effectors through physical binding to their HMA (Heavy Metal-Associated) IDs. By introducing into RGA5_HMA the AVR-PikD binding residues of Pikp-1_HMA, we create a high-affinity binding surface for this effector. RGA5 variants carrying this engineered binding surface perceive the new ligand, AVR-PikD, and still recognize AVR-Pia and AVR1-CO39 in the model plant N. benthamiana. However, they do not confer extended disease resistance specificity against M. oryzae in transgenic rice plants. Altogether, our study provides a proof of concept for the design of new effector recognition specificities in NLRs through molecular engineering of IDs.

摘要

植物核苷酸结合和富含亮氨酸重复结构域蛋白(NLRs)是识别病原体效应子的免疫传感器。在这里,我们展示了通过对 NLR 整合诱饵结构域(ID)的分子工程,可以将其识别谱扩展到新的效应子。我们依赖于对水稻 NLRs Pikp-1 和 RGA5 分别识别 Magnaporthe oryzae 效应子 AVR-PikD、AVR-Pia 和 AVR1-CO39 的详细认识。这两个受体通过与它们的 HMA(重金属相关)ID 的物理结合来检测它们的效应子。通过将 AVR-PikD 结合残基引入 RGA5_HMA,我们为这个效应子创造了一个高亲和力的结合表面。携带这种工程化结合表面的 RGA5 变体可以识别新的配体 AVR-PikD,并且仍然可以在模式植物 N. benthamiana 中识别 AVR-Pia 和 AVR1-CO39。然而,它们在转基因水稻植株中不能赋予对稻瘟病菌的扩展疾病抗性特异性。总之,我们的研究通过 ID 的分子工程为 NLR 中新型效应子识别特异性的设计提供了一个概念验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验