Suppr超能文献

效应靶标导向的集成结构域工程改造扩展了水稻 NLR 免疫受体的抗病谱。

Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor.

机构信息

Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.

Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan.

出版信息

Elife. 2023 May 18;12:e81123. doi: 10.7554/eLife.81123.

Abstract

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.

摘要

植物细胞内的 NLR 免疫受体的一个子集通过与效应蛋白的宿主靶标相似的非传统整合结构域来检测由植物病原体分泌的促进感染的效应蛋白。效应蛋白直接与这些整合结构域结合会激活植物防御。水稻 NLR 受体 Pik-1 通过一个整合的重金属相关 (HMA) 结构域与效应子 AVR-Pik 结合。然而,隐匿性等位基因 AVR-PikC 和 AVR-PikF 避免与 Pik-HMA 相互作用并逃避宿主防御。在这里,我们利用了 AVR-Pik 与其宿主靶标 OsHIPP19 之间的生化相互作用的知识,设计了响应 AVR-PikC/F 的新型 Pik-1 变体。首先,我们将 Pikp-1 的 HMA 结构域替换为 OsHIPP19-HMA,证明了效应子靶标可以被整合到 NLR 受体中以提供新的识别谱。其次,我们利用 OsHIPP19-HMA 的结构来指导 Pikp-HMA 的突变以扩展其识别谱。我们证明了工程化的 Pikp-1 变体的扩展识别谱与效应子在体内和体外的结合以及在效应子/HMA 界面上获得新的接触相关。至关重要的是,产生工程化 Pikp-1 变体的转基因水稻对携带 AVR-PikC 或 AVR-PikF 的稻瘟病菌分离株具有抗性。这些结果表明,效应子靶标导向的 NLR 受体工程可以为作物提供新的天然抗病性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b42/10195085/b3cb3a5021e2/elife-81123-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验