Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom.
Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
J Biol Chem. 2019 Aug 30;294(35):13006-13016. doi: 10.1074/jbc.RA119.007730. Epub 2019 Jul 11.
Unconventional integrated domains in plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLRs) type can directly bind translocated effector proteins from pathogens and thereby initiate an immune response. The rice () immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the effectors AVR-Pik and AVR-Pia, respectively, from the rice blast fungal pathogen These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains in NLRs maintain specificity of effector recognition, even of structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here, using plant cell death and pathogenicity assays and protein-protein interaction analyses, we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance toward the "mis-matched" effector AVR-Pia and that the Pikp-HMA domain binds AVR-Pia We observed that the HMA domain from another Pik-1 allele, Pikm, cannot bind AVR-Pia, and it does not trigger a plant response. The crystal structure of Pikp-HMA bound to AVR-Pia at 1.9 Å resolution revealed a binding interface different from those formed with AVR-Pik effectors, suggesting plasticity in integrated domain-effector interactions. The results of our work indicate that a single NLR immune receptor can bait multiple pathogen effectors via an integrated domain, insights that may enable engineering plant immune receptors with extended disease resistance profiles.
植物细胞内核苷酸结合富含亮氨酸重复(NLR)型免疫受体中的非传统整合结构域可以直接结合来自病原体的易位效应蛋白,从而引发免疫反应。水稻()免疫受体对 Pik-1/Pik-2 和 RGA5/RGA4 都使用整合的重金属相关(HMA)结构域分别结合来自稻瘟病菌的效应子 AVR-Pik 和 AVR-Pia。这些效应子都属于 MAX 效应子家族,尽管序列上存在差异,但共享核心结构折叠。NLR 中的整合结构域如何维持效应子识别的特异性,即使是结构相似的效应子,这对于理解植物免疫受体的进化和功能具有重要意义。在这里,我们使用植物细胞死亡和致病性测定以及蛋白质-蛋白质相互作用分析,表明水稻 NLR 对 Pikp-1/Pikp-2 触发了一种免疫反应,导致对“不匹配”效应子 AVR-Pia 的部分疾病抗性,并且 Pikp-HMA 结构域结合 AVR-Pia。我们观察到另一个 Pik-1 等位基因 Pikm 的 HMA 结构域不能结合 AVR-Pia,也不会引发植物反应。Pikp-HMA 与 AVR-Pia 以 1.9 Å 分辨率的晶体结构揭示了与 AVR-Pik 效应子形成的不同结合界面,表明整合结构域-效应子相互作用具有可塑性。我们工作的结果表明,单个 NLR 免疫受体可以通过整合结构域诱饵多个病原体效应子,这一见解可能使工程植物免疫受体具有扩展的疾病抗性谱成为可能。