文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

组织中单细胞转录组的空间图谱绘制。

Spatial charting of single-cell transcriptomes in tissues.

机构信息

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA.

Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Nat Biotechnol. 2022 Aug;40(8):1190-1199. doi: 10.1038/s41587-022-01233-1. Epub 2022 Mar 21.


DOI:10.1038/s41587-022-01233-1
PMID:35314812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9673606/
Abstract

Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections, but do not have single-cell resolution. Here, we developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. We benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. We then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. We performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data show that CellTrek can accurately map single cells in diverse tissue types to resolve their spatial organization.

摘要

单细胞 RNA 测序方法可以对单细胞的转录组进行分析,但不能保留空间信息。相反,空间转录组学检测可以对组织切片中的空间区域进行分析,但不具有单细胞分辨率。在这里,我们开发了一种名为 CellTrek 的计算方法,该方法结合了这两个数据集,通过共嵌入和度量学习方法实现了单细胞空间映射。我们使用模拟和原位杂交数据集对 CellTrek 进行了基准测试,结果表明其具有准确性和鲁棒性。然后,我们将 CellTrek 应用于现有的小鼠大脑和肾脏数据集,并表明它可以检测不同细胞类型和细胞状态的拓扑模式。我们对两个原位导管癌组织进行了单细胞 RNA 测序和空间转录组学实验,并应用 CellTrek 来识别仅限于不同导管的肿瘤亚克隆,以及与肿瘤区域相邻的特定 T 细胞状态。我们的数据表明,CellTrek 可以准确地将不同组织类型的单细胞映射到它们的空间组织中。

相似文献

[1]
Spatial charting of single-cell transcriptomes in tissues.

Nat Biotechnol. 2022-8

[2]
Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.

J Comput Biol. 2022-7

[3]
Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram.

Nat Methods. 2021-11

[4]
Spatial atlas of the mouse central nervous system at molecular resolution.

Nature. 2023-10

[5]
Revealing spatial multimodal heterogeneity in tissues with SpaTrio.

Cell Genom. 2023-12-13

[6]
Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients.

J Am Soc Nephrol. 2021-2

[7]
Spatial reconstruction of single-cell gene expression data.

Nat Biotechnol. 2015-5

[8]
scHolography: a computational method for single-cell spatial neighborhood reconstruction and analysis.

Genome Biol. 2024-6-24

[9]
Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis.

Nat Biotechnol. 2022-1

[10]
DestVI identifies continuums of cell types in spatial transcriptomics data.

Nat Biotechnol. 2022-9

引用本文的文献

[1]
COL10A1 fibroblasts promote colorectal cancer metastasis and M2 macrophage polarization with pan-cancer relevance.

J Exp Clin Cancer Res. 2025-8-18

[2]
Thor: a platform for cell-level investigation of spatial transcriptomics and histology.

Nat Commun. 2025-8-5

[3]
Time-coexpress: temporal trajectory modeling of dynamic gene co-expression patterns using single-cell transcriptomics data.

BMC Bioinformatics. 2025-7-29

[4]
Decoding epithelial-fibroblast interactions in lung adenocarcinoma through single-cell and spatial transcriptomics.

J Cancer Res Clin Oncol. 2025-7-24

[5]
Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung adenocarcinoma.

NPJ Precis Oncol. 2025-7-18

[6]
High-resolution mapping of single cells in spatial context.

Nat Commun. 2025-7-15

[7]
Refinement strategies for Tangram for reliable single-cell to spatial mapping.

Bioinformatics. 2025-7-1

[8]
Systematic assessment of microenvironment-dependent transcriptional patterns and intercellular communication.

Genome Biol. 2025-7-6

[9]
Systematic screening of metabolic pathways to identify two breast cancer subtypes with divergent immune characteristics.

Sci Rep. 2025-7-1

[10]
Integrative Single-Cell and Spatial Transcriptomics Analysis Reveals ECM-remodeling Cancer-associated Fibroblast-Derived POSTN as a Key Mediator in Pancreatic Ductal Adenocarcinoma Progression.

Int J Biol Sci. 2025-5-27

本文引用的文献

[1]
Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis.

Nat Biotechnol. 2022-1

[2]
Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.

Nat Rev Genet. 2021-10

[3]
Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets.

Nat Commun. 2021-4-15

[4]
Inference and analysis of cell-cell communication using CellChat.

Nat Commun. 2021-2-17

[5]
Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes.

Nat Biotechnol. 2021-5

[6]
The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline.

Elife. 2021-1-15

[7]
Spatiotemporal analysis of human intestinal development at single-cell resolution.

Cell. 2021-2-4

[8]
Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.

Nat Biotechnol. 2021-3

[9]
Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography.

Commun Biol. 2020-10-9

[10]
Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance.

Cancer Cell. 2020-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索