Suppr超能文献

重型卡车与弱势道路使用者之间的相互作用——一项为了解高度自动化卡车交互能力的系统综述

Interactions Between Heavy Trucks and Vulnerable Road Users-A Systematic Review to Inform the Interactive Capabilities of Highly Automated Trucks.

作者信息

Fabricius Victor, Habibovic Azra, Rizgary Daban, Andersson Jonas, Wärnestål Pontus

机构信息

RISE Research Institutes of Sweden, Gothenburg, Sweden.

Halmstad University, Halmstad, Sweden.

出版信息

Front Robot AI. 2022 Mar 4;9:818019. doi: 10.3389/frobt.2022.818019. eCollection 2022.

Abstract

This study investigates interactive behaviors and communication cues of heavy goods vehicles (HGVs) and vulnerable road users (VRUs) such as pedestrians and cyclists as a means of informing the interactive capabilities of highly automated HGVs. Following a general framing of road traffic interaction, we conducted a systematic literature review of empirical HGV-VRU studies found through the databases Scopus, ScienceDirect and TRID. We extracted reports of interactive road user behaviors and communication cues from 19 eligible studies and categorized these into two groups: 1) the associated communication channel/mechanism (e.g., nonverbal behavior), and 2) the type of communication cue (implicit/explicit). We found the following interactive behaviors and communication cues: 1) vehicle-centric (e.g., HGV as a larger vehicle, adapting trajectory, position relative to the VRU, timing of acceleration to pass the VRU, displaying information human-machine interface), 2) driver-centric (e.g., professional driver, present inside/outside the cabin, eye-gaze behavior), and 3) VRU-centric (e.g., racer cyclist, adapting trajectory, position relative to the HGV, proximity to other VRUs, eye-gaze behavior). These cues are predominantly based on road user trajectories and movements (i.e., kinesics/proxemics nonverbal behavior) forming implicit communication, which indicates that this is the primary mechanism for HGV-VRU interactions. However, there are also reports of more explicit cues such as cyclists waving to say thanks, the use of turning indicators, or new types of external human-machine interfaces (eHMI). Compared to corresponding scenarios with light vehicles, HGV-VRU interaction patterns are to a high extent formed by the HGV's size, shape and weight. For example, this can cause VRUs to feel less safe, drivers to seek to avoid unnecessary decelerations and accelerations, or lead to strategic behaviors due to larger blind-spots. Based on these findings, it is likely that road user trajectories and kinematic behaviors will form the basis for communication also for highly automated HGV-VRU interaction. However, it might also be beneficial to use additional eHMI to compensate for the loss of more social driver-centric cues or to signal other types of information. While controlled experiments can be used to gather such initial insights, deeper understanding of highly automated HGV-VRU interactions will also require naturalistic studies.

摘要

本研究调查重型货车(HGV)与弱势道路使用者(VRU,如行人和骑自行车者)之间的交互行为和沟通线索,以此了解高度自动化重型货车的交互能力。在对道路交通交互进行总体框架设定之后,我们通过Scopus、ScienceDirect和TRID数据库,对已有的重型货车与弱势道路使用者实证研究进行了系统的文献综述。我们从19项符合条件的研究中提取了道路使用者交互行为和沟通线索的报告,并将其分为两组:1)相关的沟通渠道/机制(如非语言行为),以及2)沟通线索的类型(隐性/显性)。我们发现了以下交互行为和沟通线索:1)以车辆为中心的(如重型货车作为大型车辆,调整行驶轨迹、相对于弱势道路使用者的位置、加速超过弱势道路使用者的时机、通过人机界面显示信息),2)以驾驶员为中心的(如职业驾驶员,在驾驶室内外,眼神注视行为),以及3)以弱势道路使用者为中心的(如赛车手骑自行车者,调整行驶轨迹、相对于重型货车的位置、与其他弱势道路使用者的距离、眼神注视行为)。这些线索主要基于道路使用者的轨迹和动作(即身势学/空间关系学非语言行为)形成隐性沟通,这表明这是重型货车与弱势道路使用者交互的主要机制。然而,也有关于更明确线索的报告,如骑自行车者挥手致谢、使用转向灯或新型外部人机界面(eHMI)。与轻型车辆的相应场景相比,重型货车与弱势道路使用者的交互模式在很大程度上由重型货车的尺寸、形状和重量决定。例如,这可能会使弱势道路使用者感到安全感降低,驾驶员试图避免不必要的减速和加速,或者由于更大的盲区而导致策略性的行为。基于这些发现,道路使用者的轨迹和运动行为很可能也将成为高度自动化重型货车与弱势道路使用者交互沟通的基础。然而,使用额外的外部人机界面来弥补更多以驾驶员为中心的社交线索的缺失或传达其他类型的信息可能也会有所帮助。虽然可以通过控制实验来获取此类初步见解,但要更深入地了解高度自动化重型货车与弱势道路使用者之间的交互,还需要进行自然主义研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e71d/8934416/9a5cd60e68b9/frobt-09-818019-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验