Suppr超能文献

基于网络的骨肉瘤患者教育材料:可读性与可理解性的定量评估

Web-Based Patient Educational Material on Osteosarcoma: Quantitative Assessment of Readability and Understandability.

作者信息

Gulbrandsen Trevor Robert, Skalitzky Mary Kate, Shamrock Alan Gregory, Gao Burke, Hasan Obada, Miller Benjamin James

机构信息

Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.

出版信息

JMIR Cancer. 2022 Mar 24;8(1):e25005. doi: 10.2196/25005.

Abstract

BACKGROUND

Patients often turn to web-based resources following the diagnosis of osteosarcoma. To be fully understood by average American adults, the American Medical Association (AMA) and National Institutes of Health (NIH) recommend web-based health information to be written at a 6th grade level or lower. Previous analyses of osteosarcoma resources have not measured whether text is written such that readers can process key information (understandability) or identify available actions to take (actionability). The Patient Education Materials Assessment Tool (PEMAT) is a validated measurement of understandability and actionability.

OBJECTIVE

The purpose of this study was to evaluate web-based osteosarcoma resources using measures of readability, understandability, and actionability.

METHODS

Using the search term "osteosarcoma," two independent Google searches were performed on March 7, 2020 (by AGS), and March 11, 2020 (by TRG). The top 50 results were collected. Websites were included if they were directed at providing patient education on osteosarcoma. Readability was quantified using validated algorithms: Flesh-Kincaid Grade Ease (FKGE), Flesch-Kincaid Grade-Level (FKGL). A higher FKGE score indicates that the material is easier to read. All other readability scores represent the US school grade level. Two independent PEMAT assessments were performed with independent scores assigned for both understandability and actionability. A PEMAT score of 70% or below is considered poorly understandable or poorly actionable. Statistical significance was defined as P≤.05.

RESULTS

Two searches yielded 53 unique websites, of which 37 (70%) met the inclusion criteria. The mean FKGE and FKGL scores were 40.8 (SD 13.6) and 12.0 (SD 2.4), respectively. No website scored within the acceptable NIH or AHA recommended reading level. Only 4 (11%) and 1 (3%) website met the acceptable understandability and actionability threshold. Both understandability and actionability were positively correlated with FKGE (ρ=0.55, P<.001; ρ=0.60, P<.001), but were otherwise not significantly associated with other readability scores. There were no associations between readability (P=.15), understandability (P=.20), or actionability (P=.31) scores and Google rank.

CONCLUSIONS

Overall, web-based osteosarcoma patient educational materials scored poorly with respect to readability, understandability, and actionability. None of the web-based resources scored at the recommended reading level. Only 4 achieved the appropriate score to be considered understandable by the general public. Authors of patient resources should incorporate PEMAT and readability criteria to improve web-based resources to support patient understanding.

摘要

背景

骨肉瘤确诊后,患者常常会求助于网络资源。为了让普通美国成年人能够充分理解,美国医学协会(AMA)和美国国立卫生研究院(NIH)建议网络健康信息的撰写水平应在六年级及以下。以往对骨肉瘤相关资源的分析并未衡量文本的撰写方式是否能让读者理解关键信息(可理解性)或确定可采取的行动(可操作性)。患者教育材料评估工具(PEMAT)是一种经过验证的可衡量可理解性和可操作性的工具。

目的

本研究旨在使用可读性、可理解性和可操作性指标评估基于网络的骨肉瘤资源。

方法

使用搜索词“骨肉瘤”,于2020年3月7日(由AGS进行)和2020年3月11日(由TRG进行)进行了两次独立的谷歌搜索。收集了前50个结果。如果网站旨在提供有关骨肉瘤的患者教育,则将其纳入。使用经过验证的算法对可读性进行量化:弗莱什-金凯德易读性等级(FKGE)、弗莱什-金凯德年级水平(FKGL)。FKGE得分越高表明材料越易读。所有其他可读性得分代表美国学校年级水平。进行了两次独立的PEMAT评估,并为可理解性和可操作性分别给出独立分数。PEMAT得分70%或以下被认为可理解性差或可操作性差。统计学显著性定义为P≤0.05。

结果

两次搜索共得到53个独特网站,其中37个(70%)符合纳入标准。FKGE和FKGL的平均得分分别为40.8(标准差13.6)和                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        &emsp

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae9/8990380/0fe30c19af7a/cancer_v8i1e25005_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验