基于两大洲的大规模队列的具有表型特征的稳健微生物组关联图谱。
An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents.
机构信息
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
出版信息
PLoS One. 2022 Mar 24;17(3):e0265756. doi: 10.1371/journal.pone.0265756. eCollection 2022.
Numerous human conditions are associated with the microbiome, yet studies are inconsistent as to the magnitude of the associations and the bacteria involved, likely reflecting insufficiently employed sample sizes. Here, we collected diverse phenotypes and gut microbiota from 34,057 individuals from Israel and the U.S.. Analyzing these data using a much-expanded microbial genomes set, we derive an atlas of robust and numerous unreported associations between bacteria and physiological human traits, which we show to replicate in cohorts from both continents. Using machine learning models trained on microbiome data, we show prediction accuracy of human traits across two continents. Subsampling our cohort to smaller cohort sizes yielded highly variable models and thus sensitivity to the selected cohort, underscoring the utility of large cohorts and possibly explaining the source of discrepancies across studies. Finally, many of our prediction models saturate at these numbers of individuals, suggesting that similar analyses on larger cohorts may not further improve these predictions.
许多人类状况都与微生物组有关,但研究结果在关联的程度和涉及的细菌方面不一致,这可能反映了样本量不足。在这里,我们从来自以色列和美国的 34057 个人中收集了不同的表型和肠道微生物组。使用一个扩展了的微生物基因组集分析这些数据,我们得出了一个细菌与人体生理特征之间存在大量未被报道的关联图谱,我们在来自两个大陆的队列中复制了这些关联。使用基于微生物组数据训练的机器学习模型,我们展示了在两个大陆上对人体特征的预测准确性。对我们的队列进行亚群采样以得到更小的队列大小会产生高度可变的模型,因此对所选队列敏感,这突出了大队列的实用性,并可能解释了研究之间差异的来源。最后,我们的许多预测模型在这些个体数量上达到饱和,这表明在更大的队列上进行类似的分析可能不会进一步提高这些预测的准确性。