Suppr超能文献

TWO-SIGMA-G:一种新的竞争基因集测试框架,用于 scRNA-seq 数据,同时考虑基因间和细胞间相关性。

TWO-SIGMA-G: a new competitive gene set testing framework for scRNA-seq data accounting for inter-gene and cell-cell correlation.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health.

Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation.

出版信息

Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac084.

Abstract

We propose TWO-SIGMA-G, a competitive gene set test for scRNA-seq data. TWO-SIGMA-G uses a mixed-effects regression model based on our previously published TWO-SIGMA to test for differential expression at the gene-level. This regression-based model provides flexibility and rigor at the gene-level in (1) handling complex experimental designs, (2) accounting for the correlation between biological replicates and (3) accommodating the distribution of scRNA-seq data to improve statistical inference. Moreover, TWO-SIGMA-G uses a novel approach to adjust for inter-gene-correlation (IGC) at the set-level to control the set-level false positive rate. Simulations demonstrate that TWO-SIGMA-G preserves type-I error and increases power in the presence of IGC compared with other methods. Application to two datasets identified HIV-associated interferon pathways in xenograft mice and pathways associated with Alzheimer's disease progression in humans.

摘要

我们提出了 TWO-SIGMA-G,这是一种用于 scRNA-seq 数据的竞争性基因集检验方法。TWO-SIGMA-G 使用基于我们之前发表的 TWO-SIGMA 的混合效应回归模型来检验基因水平的差异表达。这种基于回归的模型在(1)处理复杂的实验设计、(2)考虑生物复制之间的相关性和(3)适应 scRNA-seq 数据的分布以提高统计推断方面,在基因水平上提供了灵活性和严谨性。此外,TWO-SIGMA-G 使用一种新的方法来调整基因间相关性(IGC)在集合级别以控制集合级别的假阳性率。模拟表明,与其他方法相比,TWO-SIGMA-G 在存在 IGC 的情况下保留了 I 型错误并提高了功效。将其应用于两个数据集,确定了异种移植小鼠中与 HIV 相关的干扰素途径以及人类阿尔茨海默病进展相关的途径。

相似文献

4
Data Analysis in Single-Cell Transcriptome Sequencing.单细胞转录组测序中的数据分析
Methods Mol Biol. 2018;1754:311-326. doi: 10.1007/978-1-4939-7717-8_18.
7
Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.单细胞 RNA 测序分析:分步概述。
Methods Mol Biol. 2021;2284:343-365. doi: 10.1007/978-1-0716-1307-8_19.

本文引用的文献

5
Droplet scRNA-seq is not zero-inflated.液滴单细胞RNA测序不存在零膨胀问题。
Nat Biotechnol. 2020 Feb;38(2):147-150. doi: 10.1038/s41587-019-0379-5.
8
Single-cell transcriptomic analysis of Alzheimer's disease.阿尔茨海默病的单细胞转录组分析。
Nature. 2019 Jun;570(7761):332-337. doi: 10.1038/s41586-019-1195-2. Epub 2019 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验