Suppr超能文献

基于BZINB模型的通路分析和模块识别有助于整合微生物组和代谢组数据。

BZINB Model-Based Pathway Analysis and Module Identification Facilitates Integration of Microbiome and Metabolome Data.

作者信息

Lin Bridget M, Cho Hunyong, Liu Chuwen, Roach Jeff, Ribeiro Apoena Aguiar, Divaris Kimon, Wu Di

机构信息

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Research Computing, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Microorganisms. 2023 Mar 16;11(3):766. doi: 10.3390/microorganisms11030766.

Abstract

Integration of multi-omics data is a challenging but necessary step to advance our understanding of the biology underlying human health and disease processes. To date, investigations seeking to integrate multi-omics (e.g., microbiome and metabolome) employ simple correlation-based network analyses; however, these methods are not always well-suited for microbiome analyses because they do not accommodate the excess zeros typically present in these data. In this paper, we introduce a bivariate zero-inflated negative binomial (BZINB) model-based network and module analysis method that addresses this limitation and improves microbiome-metabolome correlation-based model fitting by accommodating excess zeros. We use real and simulated data based on a multi-omics study of childhood oral health (ZOE 2.0; investigating early childhood dental caries, ECC) and find that the accuracy of the BZINB model-based correlation method is superior compared to Spearman's rank and Pearson correlations in terms of approximating the underlying relationships between microbial taxa and metabolites. The new method, BZINB-iMMPath, facilitates the construction of metabolite-species and species-species correlation networks using BZINB and identifies modules of (i.e., correlated) species by combining BZINB and similarity-based clustering. Perturbations in correlation networks and modules can be efficiently tested between groups (i.e., healthy and diseased study participants). Upon application of the new method in the ZOE 2.0 study microbiome-metabolome data, we identify that several biologically-relevant correlations of ECC-associated microbial taxa with carbohydrate metabolites differ between healthy and dental caries-affected participants. In sum, we find that the BZINB model is a useful alternative to Spearman or Pearson correlations for estimating the underlying correlation of zero-inflated bivariate count data and thus is suitable for integrative analyses of multi-omics data such as those encountered in microbiome and metabolome studies.

摘要

整合多组学数据是推进我们对人类健康和疾病过程背后生物学理解的一项具有挑战性但又必不可少的步骤。迄今为止,试图整合多组学(例如微生物组和代谢组)的研究采用基于简单相关性的网络分析;然而,这些方法并不总是非常适合微生物组分析,因为它们无法处理这些数据中通常存在的大量零值。在本文中,我们介绍了一种基于双变量零膨胀负二项式(BZINB)模型的网络和模块分析方法,该方法解决了这一局限性,并通过处理大量零值改进了基于微生物组-代谢组相关性的模型拟合。我们使用基于儿童口腔健康多组学研究(ZOE 2.0;调查幼儿龋齿,ECC)的真实和模拟数据,发现在近似微生物分类群与代谢物之间的潜在关系方面,基于BZINB模型的相关性方法的准确性优于Spearman秩相关和Pearson相关性。新方法BZINB-iMMPath利用BZINB促进代谢物-物种和物种-物种相关性网络的构建,并通过结合BZINB和基于相似性的聚类来识别(即相关的)物种模块。可以在组间(即健康和患病的研究参与者)有效地测试相关性网络和模块中的扰动。在将新方法应用于ZOE 2.0研究的微生物组-代谢组数据时,我们发现健康参与者和患龋齿参与者之间,与碳水化合物代谢物相关的ECC相关微生物分类群的几种生物学相关相关性存在差异。总之,我们发现BZINB模型是Spearman或Pearson相关性的一种有用替代方法,用于估计零膨胀双变量计数数据的潜在相关性,因此适用于微生物组和代谢组研究等多组学数据的综合分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab9/10056694/3fb1170dbf2f/microorganisms-11-00766-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验