Suppr超能文献

SnapHiC-D:一种从单细胞 Hi-C 数据中识别差异染色质接触的计算流程。

SnapHiC-D: a computational pipeline to identify differential chromatin contacts from single-cell Hi-C data.

机构信息

Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.

Ludwig Institute for Cancer Research, La Jolla, CA, USA.

出版信息

Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad315.

Abstract

Single-cell high-throughput chromatin conformation capture technologies (scHi-C) has been used to map chromatin spatial organization in complex tissues. However, computational tools to detect differential chromatin contacts (DCCs) from scHi-C datasets in development and through disease pathogenesis are still lacking. Here, we present SnapHiC-D, a computational pipeline to identify DCCs between two scHi-C datasets. Compared to methods designed for bulk Hi-C data, SnapHiC-D detects DCCs with high sensitivity and accuracy. We used SnapHiC-D to identify cell-type-specific chromatin contacts at 10 Kb resolution in mouse hippocampal and human prefrontal cortical tissues, demonstrating that DCCs detected in the hippocampal and cortical cell types are generally associated with cell-type-specific gene expression patterns and epigenomic features. SnapHiC-D is freely available at https://github.com/HuMingLab/SnapHiC-D.

摘要

单细胞高通量染色质构象捕获技术(scHi-C)已被用于绘制复杂组织中的染色质空间构象。然而,用于从发育和疾病发病机制中的 scHi-C 数据集检测差异染色质接触(DCC)的计算工具仍然缺乏。在这里,我们提出了 SnapHiC-D,这是一种用于识别两个 scHi-C 数据集之间 DCC 的计算管道。与专门为批量 Hi-C 数据设计的方法相比,SnapHiC-D 具有高灵敏度和准确性地检测 DCC。我们使用 SnapHiC-D 在小鼠海马体和人类前额皮质组织中以 10 Kb 的分辨率识别细胞类型特异性染色质接触,证明在海马体和皮质细胞类型中检测到的 DCC 通常与细胞类型特异性基因表达模式和表观基因组特征相关。SnapHiC-D 可在 https://github.com/HuMingLab/SnapHiC-D 上免费获得。

相似文献

2
SnapHiC2: A computationally efficient loop caller for single cell Hi-C data.
Comput Struct Biotechnol J. 2022 Jun 1;20:2778-2783. doi: 10.1016/j.csbj.2022.05.046. eCollection 2022.
3
SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
Nat Methods. 2021 Sep;18(9):1056-1059. doi: 10.1038/s41592-021-01231-2. Epub 2021 Aug 26.
5
Connecting high-resolution 3D chromatin organization with epigenomics.
Nat Commun. 2022 Apr 19;13(1):2054. doi: 10.1038/s41467-022-29695-6.
6
SnapFISH: a computational pipeline to identify chromatin loops from multiplexed DNA FISH data.
Nat Commun. 2023 Aug 12;14(1):4873. doi: 10.1038/s41467-023-40658-3.
7
Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
Genome Biol. 2016 Jul 8;17(1):152. doi: 10.1186/s13059-016-1003-3.
8
THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data.
PLoS Genet. 2022 Mar 8;18(3):e1010102. doi: 10.1371/journal.pgen.1010102. eCollection 2022 Mar.
9
Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
BMC Bioinformatics. 2020 Nov 7;21(1):506. doi: 10.1186/s12859-020-03832-8.
10
scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i490-i500. doi: 10.1093/bioinformatics/btae223.

引用本文的文献

1
scHiCcompare: An R Package for Differential Analysis of Single-cell Hi-C Data.
J Mol Biol. 2025 Apr 15:169155. doi: 10.1016/j.jmb.2025.169155.
3
A deep learning-based method enables the automatic and accurate assembly of chromosome-level genomes.
Nucleic Acids Res. 2024 Oct 28;52(19):e92. doi: 10.1093/nar/gkae789.

本文引用的文献

1
Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.
Cell Syst. 2022 Oct 19;13(10):798-807.e6. doi: 10.1016/j.cels.2022.09.004.
2
Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D.
Genome Biol. 2022 Oct 17;23(1):222. doi: 10.1186/s13059-022-02774-z.
3
SnapHiC2: A computationally efficient loop caller for single cell Hi-C data.
Comput Struct Biotechnol J. 2022 Jun 1;20:2778-2783. doi: 10.1016/j.csbj.2022.05.046. eCollection 2022.
4
Mapping chromatin loops in single cells.
Trends Genet. 2022 Jul;38(7):637-640. doi: 10.1016/j.tig.2022.03.007. Epub 2022 Apr 7.
6
IDEAS: individual level differential expression analysis for single-cell RNA-seq data.
Genome Biol. 2022 Jan 24;23(1):33. doi: 10.1186/s13059-022-02605-1.
7
Cell-type specialization is encoded by specific chromatin topologies.
Nature. 2021 Nov;599(7886):684-691. doi: 10.1038/s41586-021-04081-2. Epub 2021 Nov 17.
8
Multiscale and integrative single-cell Hi-C analysis with Higashi.
Nat Biotechnol. 2022 Feb;40(2):254-261. doi: 10.1038/s41587-021-01034-y. Epub 2021 Oct 11.
9
DNA methylation atlas of the mouse brain at single-cell resolution.
Nature. 2021 Oct;598(7879):120-128. doi: 10.1038/s41586-020-03182-8. Epub 2021 Oct 6.
10
Single-cell nuclear architecture across cell types in the mouse brain.
Science. 2021 Oct 29;374(6567):586-594. doi: 10.1126/science.abj1966. Epub 2021 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验