Suppr超能文献

一种用于 ICU 患者脓毒症精准预测的机器学习模型。

A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients.

机构信息

General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, China.

出版信息

Front Public Health. 2021 Oct 15;9:754348. doi: 10.3389/fpubh.2021.754348. eCollection 2021.

Abstract

Although numerous studies are conducted every year on how to reduce the fatality rate associated with sepsis, it is still a major challenge faced by patients, clinicians, and medical systems worldwide. Early identification and prediction of patients at risk of sepsis and adverse outcomes associated with sepsis are critical. We aimed to develop an artificial intelligence algorithm that can predict sepsis early. This was a secondary analysis of an observational cohort study from the Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University. A total of 4,449 infected patients were randomly assigned to the development and validation data set at a ratio of 4:1. After extracting electronic medical record data, a set of 55 features (variables) was calculated and passed to the random forest algorithm to predict the onset of sepsis. The pre-procedure clinical variables were used to build a prediction model from the training data set using the random forest machine learning method; a 5-fold cross-validation was used to evaluate the prediction accuracy of the model. Finally, we tested the model using the validation data set. The area obtained by the model under the receiver operating characteristic (ROC) curve (AUC) was 0.91, the sensitivity was 87%, and the specificity was 89%. This newly established machine learning-based model has shown good predictive ability in Chinese sepsis patients. External validation studies are necessary to confirm the universality of our method in the population and treatment practice.

摘要

尽管每年都有大量研究致力于降低脓毒症相关死亡率,但它仍是全球患者、临床医生和医疗系统面临的重大挑战。早期识别和预测脓毒症风险患者以及与脓毒症相关的不良结局至关重要。我们旨在开发一种能够早期预测脓毒症的人工智能算法。这是对郑州大学第一附属医院重症监护病房的一项观察性队列研究的二次分析。共有 4449 例感染患者被随机分为开发数据集和验证数据集,比例为 4:1。在提取电子病历数据后,计算了一组 55 个特征(变量),并将其传递给随机森林算法以预测脓毒症的发生。使用随机森林机器学习方法,从训练数据集的预处理临床变量构建预测模型;使用 5 折交叉验证评估模型的预测准确性。最后,我们使用验证数据集测试了模型。模型在接收者操作特征(ROC)曲线下获得的面积(AUC)为 0.91,灵敏度为 87%,特异性为 89%。这个新建立的基于机器学习的模型在中国脓毒症患者中表现出了良好的预测能力。需要进行外部验证研究,以确认我们的方法在人群和治疗实践中的普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3568/8553999/342445d87461/fpubh-09-754348-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验