Suppr超能文献

用于自动皮肤病预后的深度学习方法。

Deep Learning Approaches for Prognosis of Automated Skin Disease.

作者信息

Kshirsagar Pravin R, Manoharan Hariprasath, Shitharth S, Alshareef Abdulrhman M, Albishry Nabeel, Balachandran Praveen Kumar

机构信息

Department of Artificial Intelligence, G.H. Raisoni College of Engineering, Nagpur 412207, India.

Department of Electronics and Communication Engineering, Panimalar Institute of Technology, Poonamallee, Chennai 600123, India.

出版信息

Life (Basel). 2022 Mar 15;12(3):426. doi: 10.3390/life12030426.

Abstract

Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.

摘要

皮肤问题是地球上最常见的疾病之一。尽管其很常见,但由于肤色、发色和发型的复杂性,对其进行评估并不容易。皮肤疾病在全球范围内构成了重大的公共卫生风险。当它们进入侵袭阶段时就会变得危险。皮肤病是医学界的一个重大关注点。由于污染加剧和饮食不良,患有皮肤疾病的人数正以惊人的速度上升。人们常常忽视皮肤疾病的早期迹象。目前诊断和治疗皮肤疾病的方法依赖于由医生检查和实施的活检过程。一种混合技术可以避免人工评估,从而及时提供有希望的结果。深入研究的方法表明,深度学习方法可用于构建能够识别各种皮肤疾病的框架。为了检测皮肤疾病,必须区分皮肤和非皮肤组织。本研究使用MobileNetV2和LSTM开发了一种皮肤疾病分类系统。对于该系统,皮肤病预测的准确性是主要目标,同时要确保在存储完整状态信息以进行准确预测方面具有出色的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a204/8951408/8843af9c895e/life-12-00426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验