Suppr超能文献

抑郁症研究中的精准实证医学:一种新的抑郁症模型、新的内表型类别和通路表型,以及一个数字自我。

Precision Nomothetic Medicine in Depression Research: A New Depression Model, and New Endophenotype Classes and Pathway Phenotypes, and A Digital Self.

作者信息

Maes Michael

机构信息

Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria.

出版信息

J Pers Med. 2022 Mar 5;12(3):403. doi: 10.3390/jpm12030403.

Abstract

Machine learning approaches, such as soft independent modeling of class analogy (SIMCA) and pathway analysis, were introduced in depression research in the 1990s (Maes et al.) to construct neuroimmune endophenotype classes. The goal of this paper is to examine the promise of precision psychiatry to use information about a depressed person's own pan-omics, environmental, and lifestyle data, or to tailor preventative measures and medical treatments to endophenotype subgroups of depressed patients in order to achieve the best clinical outcome for each individual. Three steps are emerging in precision medicine: (1) the optimization and refining of classical models and constructing digital twins; (2) the use of precision medicine to construct endophenotype classes and pathway phenotypes, and (3) constructing a digital self of each patient. The root cause of why precision psychiatry cannot develop into true sciences is that there is no correct (cross-validated and reliable) model of clinical depression as a serious medical disorder discriminating it from a normal emotional distress response including sadness, grief and demoralization. Here, we explain how we used (un)supervised machine learning such as partial least squares path analysis, SIMCA and factor analysis to construct (a) a new precision depression model; (b) a new endophenotype class, namely major dysmood disorder (MDMD), which is a nosological class defined by severe symptoms and neuro-oxidative toxicity; and a new pathway phenotype, namely the reoccurrence of illness (ROI) index, which is a latent vector extracted from staging characteristics (number of depression and manic episodes and suicide attempts), and (c) an ideocratic profile with personalized scores based on all MDMD features.

摘要

机器学习方法,如类类比软独立建模(SIMCA)和通路分析,于20世纪90年代被引入抑郁症研究(梅斯等人),以构建神经免疫内表型类别。本文的目的是检验精准精神病学利用抑郁症患者自身的全组学、环境和生活方式数据的信息,或针对抑郁症患者的内表型亚组定制预防措施和药物治疗,以便为每个个体实现最佳临床结果的前景。精准医学正在出现三个步骤:(1)优化和完善经典模型并构建数字孪生;(2)利用精准医学构建内表型类别和通路线表型;(3)构建每个患者的数字自我。精准精神病学无法发展成为真正科学的根本原因在于,没有一个正确的(经过交叉验证且可靠的)临床抑郁症模型,作为一种严重的医学疾病,将其与包括悲伤、悲痛和士气低落在内的正常情绪困扰反应区分开来。在此,我们解释了我们如何使用(无)监督机器学习,如偏最小二乘路径分析、SIMCA和因子分析来构建:(a)一个新的精准抑郁症模型;(b)一个新的内表型类别,即重度情绪失调障碍(MDMD),这是一个由严重症状和神经氧化毒性定义的疾病分类类别;以及一个新的通路线表型,即疾病复发(ROI)指数,这是一个从分期特征(抑郁和躁狂发作次数以及自杀未遂次数)中提取的潜在向量;(c)一个基于所有MDMD特征的具有个性化分数的特质概况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ceb/8955533/658e8c5a6121/jpm-12-00403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验