Suppr超能文献

利用无监督聚类优化深度学习模型以预测基因突变。

Optimization of deep learning models for the prediction of gene mutations using unsupervised clustering.

机构信息

School of Data Science, University of Science and Technology of China, Hefei, PR China.

Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, PR China.

出版信息

J Pathol Clin Res. 2023 Jan;9(1):3-17. doi: 10.1002/cjp2.302. Epub 2022 Nov 14.

Abstract

Deep learning models are increasingly being used to interpret whole-slide images (WSIs) in digital pathology and to predict genetic mutations. Currently, it is commonly assumed that tumor regions have most of the predictive power. However, it is reasonable to assume that other tissues from the tumor microenvironment may also provide important predictive information. In this paper, we propose an unsupervised clustering-based multiple-instance deep learning model for the prediction of genetic mutations using WSIs of three cancer types obtained from The Cancer Genome Atlas. Our proposed model facilitates the identification of spatial regions related to specific gene mutations and exclusion of patches that lack predictive information through the use of unsupervised clustering. This results in a more accurate prediction of gene mutations when compared with models using all image patches on WSIs and two recently published algorithms for all three different cancer types evaluated in this study. In addition, our study validates the hypothesis that the prediction of gene mutations solely based on tumor regions on WSI slides may not always provide the best performance. Other tissue types in the tumor microenvironment could provide a better prediction ability than tumor tissues alone. These results highlight the heterogeneity in the tumor microenvironment and the importance of identification of predictive image patches in digital pathology prediction tasks.

摘要

深度学习模型越来越多地被用于解释数字病理学中的全切片图像 (WSI) 并预测基因突变。目前,人们普遍认为肿瘤区域具有最大的预测能力。然而,有理由认为肿瘤微环境中的其他组织也可能提供重要的预测信息。在本文中,我们提出了一种基于无监督聚类的多实例深度学习模型,用于使用从癌症基因组图谱获得的三种癌症类型的 WSI 预测基因突变。我们的模型通过使用无监督聚类来识别与特定基因突变相关的空间区域并排除缺乏预测信息的斑块,从而有助于识别与特定基因突变相关的空间区域,并排除缺乏预测信息的斑块,从而实现更准确的基因突变预测。与使用 WSI 上的所有图像补丁以及本研究中评估的三种不同癌症类型的两种最近发布的算法的模型相比,我们的模型实现了更准确的基因突变预测。此外,我们的研究验证了这样一个假设,即仅基于 WSI 幻灯片上的肿瘤区域预测基因突变可能并不总是提供最佳性能。肿瘤微环境中的其他组织类型可能比肿瘤组织单独提供更好的预测能力。这些结果突出了肿瘤微环境的异质性以及在数字病理学预测任务中识别预测性图像补丁的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1f/9732687/8a255a02586f/CJP2-9-3-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验